Unfold your talent VIA University College

Curriculum Programme section

Bachelor of Engineering in Materials Science

For students enrolled in August 2018 and after

Transition for students enrolled August 2017.

Updated 30 June 2020

TABLE OF CONTENT

1	Introduction	3
2	Identity of the programme	3
3	Structure and content	4
4	Compulsory courses of the programme, 1st – 4th semester	5
4.1	1st semester: Innovation and Development	6
4.2	2nd semester: Quality CSR and sustainability	8
4.3	3rd semester: Future materials	9
4.4	4th semester: Business-oriented Innovation	11
5	Mentor arrangement from 4th semester	13
6	Internship, 5th semester	13
7	Elective courses and semester project, 6th – 7th semester	14
7.1	Elective courses	15
7.2	Specialisation: Textile	17
7.3	Specialisation: Plastics	17
8	Practical Workshops	18
9	Bachelor Project	18
10	Exam rules applicable only for Bachelor of Engineering in Materials Science Engineering	19
11	Title and issue of diploma	19
12	Appendix 1: Transition for students enrolled in August 2017	21
13	Appendix 2: Courses Materials Science Engineering Programme	25

1 Introduction

In accordance with the Diploma Engineering Education programme, the purpose of the diploma engineering programme is to qualify students to, nationally and internationally, carry out the following business functions;

- Transpose technical research results as well as scientific and technical knowledge to practical use in development tasks and in solving technical problems within the field of interest
- Critically acquire new knowledge within relevant engineering areas
- Independently solve common engineering task
- Plan, implement and manage technical and technological facilities, including being able to involve social, economic, environmental, sustainability and occupational health consequences in the solution of technical problems
- Participate in collaborative and managerial functions and contexts at a qualified level with people who have different educational, linguistic and cultural backgrounds

In addition, the education must qualify students to participate in further studies.

VIA Engineering, endeavours to work in accordance with a common DNA for all engineering courses. The DNA contains a description of what especially characterizes the engineering programmes at VIA, as well as what to expect from a graduate from our engineering programmes.

At VIA Engineering, we are practice- and project oriented and focused on the surrounding world. These goals are achieved in the form of qualified graduates obtained through targeted education, relevant research and development as well as cooperation and ongoing dialogue and mentor arrangement with the business community. The programmes at VIA Engineering will qualify the graduates to perform practice- and development-oriented business functions.

English-language programmes and international admission is a characteristic of our engineering programmes. This profile creates a unique opportunity to educate students who can act in a Danish context in an increasingly global market. Our lecturers have a broad practical experience, and they understand how to Anchor the theory in practice through laboratory work, company visits and projects for and in collaboration with companies.

To ensure the usefulness of the content of the programme, the principles of the CDIO education concept are applied, ensuring that the individual courses are continuously reviewed, evaluated and developed.

2 Identity of the programme

The purpose of the Materials Science Engineering Programme at VIA is to enable the graduates to work within the areas of Material Science and Product design/development, sustainability and CSR, Innovation and giving them the opportunity to specialize in 1) Textile 2) Plastics.Furthermore, the graduates will develop competences enabling them to work as project managers both nationally and internationally within the Material Science, Product Design, Product Development or Innovation area,

The purpose of the programme is primarily achieved by:

 Making project work an essential part of the course in which the technical elements of the programme are integrated VIA problem solving focusing on use-oriented and practical engineering work. In the project work, it is also important that the students develop technical, methodical, communicative and personal competences.

- The student methodical, communicative and personal competences is a key development area in the Mentor arrangement
- Collaboration with research environments and companies in connection with the courses and through the mentor arrangement.
- Offering an international study environment, in which parts of the programme can takes place abroad and were all courses are carried out in English for both Danish and foreign students. Few electives can be in Danish for both Danish and foreign student as additional options.
- Using the student's mentor arrangement and internship actively to exchange knowledge and experience between VIA and the profession.
- Obtaining application and practice-oriented competences by using VIA Horsens and VIA Designs laboratories, workshops and library facilities.

3 Structure and content

The programme is organized as an ordinary full-time higher education. For students who complete the programme without an individually organized course sequence, the programme build-up, structure and progression, including tests, will be as indicated in the table at the end of this section.

The official duration of the degree programme is 3½ years, divided into 7 semesters corresponding to 210 ECTS credits. New students are enrolled once a year in August.

The scope of each course and project is documented in ECTS credits (<u>European Credit Transfer System</u>). 1 ECTS credit corresponds to 27.5 hours of standard study activity for a student and one study year equals 60 ECTS credits.

The reading of the study material requires English on level B in order to complete the programme.

The programme consists of:

- Compulsory courses and projects
- Elective courses
- Mentor arrangement and Internship
- Bachelor Project
- Workshop practice

A semester consists of 3-6 courses as delimited courses. One course can have a volume of 5 – 10 ECTS credits and a project can have a volume of 5-20 ECTS credits.

Some compulsory courses can be taught in collaboration with AU Herning or VIA Engineering Horsens. The course at AU Herning or VIA Engineering Horsens must be approved by the Materials Science Engineering coordinator in order to secure the relevance and an increase of the technical level. Physically the course in collaboration with AU Herning can take place at AU Herning. Physically the course in collaboration with VIA Engineering can either take place in Horsens like joint Innovation weeks, or in a combination with online learning and being present in Horsens once in a while.

The topics, volume, learning objectives and tests of the courses are described in this curriculum. For a more detailed description of the individual courses, the valid course descriptions are available on VIA's web site or on Study net.

There are three workshop courses during the two first semesters aligned to the study programme.

The programme is structured as illustrated below:

Semester Theme	Course	Course	Course	Course/ Project	Project	
7. semester Elective courseł Specialisation	Elective course	Elective course	BPR 1 Bachelor Project (speciality)			
6. semester Elective courseł Specialisation	MET5 Specialty Technology module 5	MET6 Specialty Future material Module 6	Elective course	TOC1 Theory of Science	SEP 6 Semester Pro project within	
5. semester Internship	INP1 Engineering Ir	iternship (specia	ality)			
4. semester	MET4	STR1	LOG1	PR01	INN1	SEP4
Business-	Material	Business	Logistics,	Project	Innovation	Semester
oriented	Science	development	purchasing	Management	(innovation	project
Innovation	Module 4	and Strategic Management	and out/insourci		week and Innovation)	Innovation and
			ng.			Business development
3. semester	ECO1	CHE2	MET3	PHY2	SE	P 3
Future	Economy	Applied	Material	Physics,		r project
materials	,	chemistry	technology	Electronics		material
		Dying,	processes	and thermo		
		Printing	and	dynamics		
		Chromotology	Production management	(module 2)		
2. semester	GRA1	MET2	PHY1	QSE 1	SEP2	
Quality/CSR	Graphics	Material	Statistics	QHSE	Semester pro	
and	communicati	technology	and	Management	Quality/CSR a	ind
Sustainability	on	module 2	Mechanics of materials	, CSR and	sustainability	
			for materials	sustainability		
1. semester	MAT1	STA1	MET1	CHE1	SSE1	SEP1
Innovation and	Mathematics	Statistics	Material	Basic	Study Skills	Semester
development			technology	Chemistry	for	project
			module 1	module 1	Engineering	Innovation
					Students	and
						Development

4 Compulsory courses of the programme, 1st – 4th semester

All courses and projects on the first four semesters are compulsory.

Each of the four first semesters contains a semester project that represents 5-10 ECTS credits. The overall purpose of the semester project is to tie the subjects of the semester together to a unified whole. Study techniques, Project Management, Project methodology, science theory, research methodology and teamwork will be introduced throughout the programme in connection with the semester projects.

The content of Project management within the 4 semesters is equal to 5 ECTS workload, included in the projects.

Each semester has a theme in such a way that knowledge and skills are acquired through the courses and the competences are acquired and tested in the projects – problembased learning.

1st semester: Innovation and Development

2nd semester: Quality/CSR and sustainability

3rd semester: Future materials

4th semester: Business-oriented Innovation

4.1 1st semester: Innovation and Development

Topics

- Mathematics (MAT1)
- Statistics (STA1)
- Material Technology Module 1 (MET1)
- Basic Chemistry Module 1 (CHE1)
- Study skills for engineering students (SSE1)
- Innovation and Development incl. study skills, Semester project (SEP1)

Volume

30 ECTS credits

The learning objectives of the courses (knowledge, skills and competences) and test form are given in Appendix 2. Courses offered by AU are regulated in their curriculum.

Course purpose:

* acquire the necessary background for understanding requirement for handling of chemicals in the industry.

Through theoretical and practical exercises, students will acquire understanding of product analyses as well as technical texts used within the area of chemistry

Study Skills for Engineering Students (SSE1)

To develop the student's basic skills and competences for the excellent performance of study and project related activities that are required in the process of working towards an engineering degree.

Innovation and Development incl. study skills, Semester project (SEP1)

The purpose of the project is for students

* To gain knowledge and understanding of the concept of innovation as well as of development processes and methods.

* To use the theory acquired through the other courses of the semester

o Students should be able to apply their knowledge of materials science, chemistry, mathematics as well as drawing & graphics communication to a specific develop-ment task which forms the basis for the project.

* To develop participants' ability to work problem- and project-oriented.

* To work interdisciplinary in a project, which must contain elements of all 1st semester sub-jects.

* To develop participants' ability to systematic solve problems in collaboration with a project group, as well as documenting the project process and results in a report.

Mathematics (MAT1)	5 ECTS	Written examination, 3 hours Internal censor. 7-point scale Reexamination: As ordinary
Statistics (STA1)	5 ECTS	Home assignment, 14 days. No censor 7-point scale Re-examination: Oral, 20 minutes
Material Technology Module 1 (MET1)	5 ECTS	Written examination, 4 hours Internal censor. 7-point scale Reexamination: The school can decide that the re-exami- nation can be oral.
Basic Chemistry Module 1 (CHE1)	5 ECTS	Written examination, 4 hours Internal censor. 7-point scale Reexamination: The school can decide that the re-exami- nation can be oral.
Study Skills for Engineering Students (SSE1)	5 ECTS	Passed/Not passed 80% attendance Minimum three tests (written or oral) passed Re-evaluation: Written assign- ment
Innovation and Development incl. study skills, Semester project (SEP1)	5 ECTS	Oral project examination External censor 7-point scale

4.2 2nd semester: Quality CSR and sustainability

Topics

- Graphics communication (GRA1)
- Material Technology Module 2 (MET2)
- Statistics and Mechanics of Materials Module 1(PHY1)
- QHSE management, CSR and sustainability (QSE1)
- Quality/CSR and sustainability, Semester project (SEP2)

Volume

30 ECTS credits

The learning objectives of the courses (knowledge, skills and competences) and test form are given in Appendix 2

Course purpose:

Graphics communication (GRA1)
* Acquire a number of skills in using graphic production methods that will enable them to communicate in
a professional and interdisciplinary context using relevant IT tools.
* Acquire skills in using the computer program Illustrator and Photoshop and should learn how to work
with simple modeling using a 3D CAD-system.
* Acquire skills in sketching
* Prepare of presentation material for a concept or a physical product.
Material Technology Module 2 (MET2)
The main purpose is for the students to become more experienced with the basics about materials rele-
vant for material engineering.
An expansion on the area of materials science
is offered aiming to further guide students toward material selection,
design and quality assessment.
The main purpose is furthermore to supply the students with a solid background knowledge on the main
classes of materials and on their properties at an more advanced level.
Statistics and Mechanics of Materials Module 1 (PHY1)
The course should give the students basic knowledge about Statics and Mechanics of Materials.
QHSE management, CSR and sustainability (QSE1)
* To gain knowledge and understanding of QHSE management
* To gain knowledge and understanding of sustainable production and CSR methods and tools used to
secure sustainable production
Quality/CSR and sustainability, Semester project (SEP2)
* To use the theory acquired through the other courses of the semester, students should be able to apply
their knowledge of materials technology, Quality, physics as well as environ-mental aspects and CSR to a
specific sustainable product development assignment that forms the basis of the CSR project.
* To develop participants' ability to work problem- and project-oriented within the area of Quality, CSR or
sustainability.
* To work interdisciplinary in a project, which must contain main elements of all 2nd semester subjects.
* To further develop participants' ability to systematic solve problems in collaboration with a project group,
as well as desumenting the project process and results in a report

as well as documenting the project process and results in a report.

* To strengths the participants' ability to systematic reflect over the collaboration in the team and own contribution.

* The purpose is further more for the student to do extensive research based on a specific problem proposed to them.

Number of tests and test forms. For detailed information and requirements see appendix 2.

Graphics communication (GRA1)	5 ECTS	Written examination, 2 hours Internal censor. 7-point scale Reexamination: The school can decide that the re-exami- nation can be oral.
Material Technology Module 2 (MET2)	5 ECTS	Written examination, 4 hours Internal censor. 7-point scale Reexamination: The school can decide that the re-exami- nation can be oral.
Statistics and Mechanics of Materials Module 1(PHY1)	5 ECTS	Oral examination, 20 minutes Internal censor. 7-point scale Reexamination: As ordinary
QHSE management, CSR and sustainability (QSE1)	5 ECTS	Oral examination, 20 minutes Internal censor. 7-point scale Reexamination: As ordinary
Quality/CSR and sustainability, Semester project (SEP2)	10 ECTS	Oral project examination External censor 7-point scale Reexamination: Special re- quirements – see appendix 2.

4.3 3rd semester: Future materials

Topics

Economy (ECO1) Applied chemistry, Dying, Printing Chromotology (CHE2) Material Technology Processes and Production Management (MET3) Physics, Electronics and Thermodynamics (PHY2) Future material, Semester project (SEP3)

Volume

30 ECTS credits

The learning objectives of the courses (knowledge, skills and competences) and test form are given in Appendix 2

Course purpose:

Economy (ECO1)

The main purpose with this course is that the student must understand basic Business economics It is further the purpose to ensure that the students general understand how a company's financial management is structured including ability to understand the financial statement for a small company and make a interpretation what the figures show. Last it is also the purpose that the student must be familiar with making small budgets, cost price calculation and investment calculations.4

Applied chemistry, Dying, Printing Chromotology (CHE2)

The main purpose is for the students to become able to apply the concepts and models learned when taking the Chemistry 1 course using an independent and critical approach.

Through the course, students will acquire knowledge of scientific methods and concepts of chemistry specially in relation to the textile and the composite industry within the area of drying, printing from a chemical and more practical point of view.

By studying and analyzing descriptions of content, properties and fabric and material components, students should become able to understanding the expected chemical reaction in dying, printing and other relevant reaction in relation to the use of the polymers including toxic compounds impact on substances and materials and perform chemical toxicological assessments.

Students should acquire knowledge of commonly used color theory as well as the coloring systems applied by the industry. Students should be able to perform colorimetric.

The course will cover additional topics as well, e.g. topics of an everyday relevance or of current interest. Material Technology Processes and Production Management (MET3)

The main purpose is for the students to become more experienced with the basics about manufacturing methods relevant for material engineering.

Students should acquire basic knowledge of the manufacturing of commonly used materials and the student should be introduced to basic manufacturing processes with a focus on the plastic and textile industries.

Physics, Electronics and Thermodynamics (PHY2)

The course should give the students basic knowledge about Dynamics, Electric Direct-Current Circuits, and Thermodynamics

Future material, Semester project (SEP3)

* To gain knowledge and understanding of innovative materials and technologies and apply development processes and methods.

* To use the theory acquired through the other courses of the education program and the skills gained during the previous projects, students should be able to apply their knowledge of materials, technologies, innovation development processes and methods, sustainability and environmental matters, academic writing, graphical documentation to a specific development assignment which forms the basis for the Future Materials Project.

* To develop participants' ability to work problem- and project-oriented.

Date: August 1st 2018

* To work interdisciplinary in a project, which must contain main elements of all 4th semester subjects.

* To further develop participants' ability to systematic solve problems in collaboration with a project group, as well as documenting the project process and results in a report.

* To strengths the participants' ability to systematic reflect over the collaboration in the team and own contribution.

* The purpose is further more for the student to do extensive research related to technologies functional to manufacture the specific future materials proposed to them.

Economy (ECO1)	5 ECTS	Written examination, 4 hours
		Internal censor.
		7-point scale
		Reexamination: The school
		can decide that the re-exami-
		nation can be oral.
Applied chemistry, Dying, Printing Chromotology (CHE2)	5 ECTS	Oral examination, 20 minutes
		Internal censor.

		7-point scale Reexamination: As ordinary
Material Technology Processes and Production Management (MET3)	5 ECTS	Individual mini project Internal censor. 7-point scale Reexamination: As ordinary
Physics, Electronics and Thermodynamics (PHY2)	5 ECTS	Oral examination, 20 minutes Internal censor. 7-point scale Reexamination: As ordinary
Future material, Semester project (SEP3)	10 ECTS	Oral project examination External censor 7-point scale Reexamination: Special re- quirements – see appendix 2.

4.4 4th semester: Business-oriented Innovation

Topics

Materials Science Module 4 (MET4) Business Development and Strategy Management (STR1) Logistics, Purchasing and out/insourcing (LOG1) Project management (PRO1) Innovation (Innovation week and innovation) (INN1) Innovation and Business development, Semester project (SEP4)

Volume

30 ECTS credits

The learning objectives of the courses (knowledge, skills and competences) and test form are given in Appendix 2

Course purpose:

Materials Science Module 4 (MET4)
This course focuses on Material Science mainly within the field of textile and plastics to give the student
the basic foundation on these matters on a high level combined with relevant chemistry.
The main purpose is therefore to raise the bar on the key engineering area between textile area plastics
and chemistry related to the area.
The main purpose of the course is to supply the students with an extended overview of this fundamental
class of textile and plastics materials including properties, applications and key areas in the field.
Materials and technological processes will be covered with a particular emphasis on understanding the
impact for textiles processing as well as plastic processes.
Business Development and Strategy Management (STR1)
The purpose of this course is for the students to gain and apply knowledge on business development,
management and strategy theory, tools and planning processes in an organizational context.
Logistics, Purchasing and out/insourcing (LOG1)
The main purpose with this course is that the student must understand basic Logistics, Purchasing and
Make/Buy analysis The purpose is that the student understand logistics concepts and its basic elements
including the companies logistics task. The student must understand the relationship between logistics
and supply chain management, sourcing consideration

Project management (PRO1)

The purpose of the course is for students to acquire skills that make them able to manage and participate in projects. Students should acquire knowledge of the rules that apply to being part of such projects in order to become skilled project participants as well as project managers. In addition, students should acquire knowledge of documentation, planning, management and control tools used for project management purposes.

The purpose of the course is therefore to give students the theoretical background required to work as a project managers and participants.

Innovation (INO1)

Innovation is integral to business success in the 21st century and in this course, students will explore the innovator's mind-set and apply innovation processes to solve real-world problems. Students will be introduced to creativity, creative thinking, innovation theory and methods, and the primary learning experience will be hands-on going through the different phases of the innovation process. Innovation is not only getting a good idea, but also actually turning that idea into products or services that can be sold and make a profit in a highly competitive global market.

Innovation and Business development, Semester project (SEP4)

* to gain knowledge and understanding of innovative idea development and business processes and methods and to improve their understanding of the concept of innovation.

* To use the theory acquired through the other courses of the education program and the skills gained during the previous projects, students should be able to apply their knowledge of materials, technologies, academic writing, graphical documentation, innovation develop-ment processes and methods to a business model assignment on a specific innovative idea that forms the basis of the Innovation and Business Development Project.

* To develop participants' ability to work problem- and project-oriented.

* To work interdisciplinary in a project, which must contain elements of all 4th semester sub-jects.

* To further develop participants' ability to systematic solve problems in collaboration with a project group, as well as documenting the project process and results in a report.

* To strengths the participants' ability to systematic reflect over the collaboration in the team and own contribution.

* The purpose is further more for the student to do extensive research based on a specific problem proposed to them.

Materials Science Module 4	5 ECTS	Oral examination, 20 minutes
		Internal censor.
		7-point scale
		Reexamination: As ordinary
Business Development and Strategy Management	5 ECTS	Oral examination, 20 minutes
(STR1)		External censor.
		7-point scale
		Reexamination: As ordinary
Logistics, Purchasing and out/insourcing (LOG1)	5 ECTS	Oral examination, 20 minutes
		Internal censor.
		7-point scale
		Reexamination: As ordinary
Project management (PRO1)	5 ECTS	Oral examination, 20 minutes
		Internal censor.
		7-point scale
		Reexamination: As ordinary
Innovation (INO1)	5 ECTS	Written examination – multiple
		choice test.
		20 minutes
		Passed/not passed
		Internal censor

Innovation and Business development, Semester project (SEP4)	5 ECTS	Oral project examination External censor 7-point scale Reexamination: Special re- quirements – see appendix 2.
--	--------	--

5 Mentor arrangement from 4th semester

The mentor arrangement is an arrangement where the students are entering in an arrangement with a private or public company from the 4th semester and onwards. The goal is to place the student in the mentor company in periods during the 4th to 7th semester.

On the 4th and 6th semester the student will make his/hers semester project in and for the mentor company. On the 5th semester the student with have their internship in the mentor company – see section 6 for further details. On the 7th semester the student will make his/hers final dissertation project in and for the mentor company

The overall purpose with the mentor arrangement is to give the student maximum real company experience and insight into practical engineering work while being a student. The goal is to increase the students personal competence in a real company employment situation as well as balancing the students theoretical competences with experience for a applying the theories in practice.

The mentor company will designate a mentor for the student who will act as a normal employer, with normal following up on work related competence as well as on the development of the more personal competence. The student will act as a mentee and will be located in the mentor company during the different periods as a normal employee. The student will work on their project but also participate in the daily routines in the mentor company like department meetings etc.

The student will not receive any payment for the mentor arrangement only during the internship – see section 6 for the Internship. The company can choose to support the student with transport cost in excess of normal transport.

The student is responsible for finding a mentor company, which must be approved by VIA. The student will have a supervisor from VIA.

If it is not possible for a student to find a mentor company then VIA will help with relevant projects on the respective semesters.

If the student wishes to go aboard then the mentor company can either support this if they have relations in the given country or in the mentor arrangement. The mentor arrangement can always be ended from both sides if special circumstances occur.

6 Internship, 5th semester

DM-INP1

The internship comprises a semester of 30 ECTS credits and is placed time wise on the 5th semester of the programme. As a general rule the internship period is paid and takes place either in a private or in a public company in Denmark or abroad.

The purpose of the internship is for the student to acquire insight into practical engineering equivalent to the work of an engineering assistant, combined with the integrated application of the concepts, methods and techniques of the applied disciplines acquired in the first four semesters.

The student is responsible for finding an internship, which must be approved by VIA, who will attach a supervisor to the intern. If the student is in a mentor arrangement then the internship will take place in the mentor company. The duration of the internship must have a period of minimum 20 weeks full-time work.

The student prepares a plan for the internship programme with a corresponding assignment formulation, in cooperation with the company.

The basis for the assessment of internship is a continuous report from the student to VIA, a feedback from the internship company, as well as a presentation where the supervisor can ask detailed questions about the internship content.

If the internship is interrupted before the end of the internship period, the supervisor must, in consultation with the head of programme, assess whether the internship has had a duration and content sufficient for passing the internship.

The internship is assessed passed/not passed.

7 Elective courses and semester project, 6th – 7th semester

On 6th and 7th semester, it is possible to select elective courses. Apart from elective courses targeted selected specialisations, a number of relevant elective courses are offered on the Materials Science Engineering Programme. The potential elective course might be a combination of courses at VIA Herning, AU Herning and VIA Horsens. Descriptions of the elective courses offered by other Universities or VIA programmes are regulated by their curriculums.

VIA Engineering can cancel an elective course if too few students have selected a specific course. The affected students will have to reselect among the electives.

It is also possible to choose relevant elective courses offered by VIA's other programmes and from AU Herning, except courses, which consists of study material which the student has had earlier on in the programme. Selecting courses from other programmes must be approved by a Material Science coordinator in order to secure the relevance and an increase of the technical level.

Physically the elective course in offered by AU Herning can take place at AU Herning or at VIA Design in Herning. Physically the course offered by other programmes from VIA Engineering can either take place in Herning or Horsens or in a combination with online learning and being present in Horsens once in a while.

On Materials Science Engineering programme some of the elective courses are included in the following specialisations:

Textile Plastics

VIA Engineering can cancel a specialisation if less than 5 students have selected the specialisation due to lack of expected value due to few students. The affected students will have to reselect the specialization.

A specialisation consists of 2 elective courses (MET 5 + MET6 10 ECTS credits), 4th and 6th semester project (15 ECTS credits) and bachelor project (20 ECTS credits), in total 45 ECTS credits.

The elective courses in the 6th semester is supported with a compulsory course in Theory of Science to prepare the student for the bachelor project. The Open project on the 6th semester can be a pre-project for the bachelor project. The open project is a compulsory course on the 6th semester. The intent with the 6th semester project is to support the learned theory from the elective courses by means of a practice based project, consisting of the development and manufacturing of a product, laboratory assignments etc. preferable in the mentor company. Furthermore, the use of elements of advanced project methods is also included in the semester project.

Course/Topics	Volume	Number of tests
Semester project (SEP6)	10 ECTS	1 oral exam based on project
		work, internal censor

7.1 Elective courses

On the Materials Science Engineering Programme, the following elective courses are as minimum available:

Course purpose:

Technology - Module 5 - MET5	Semester
This course focuses on technology in relation to high performance textile materials relevant in	6
a specialist engineering industry.	Ũ
High performance textiles represent one of the most dynamic sectors of the international tex-	
tile industry as well in technical/industrial textiles as in everyday textile products including ap-	
parel and interior textiles.	
The main purpose of the course is to supply the students with an extended overview of the	
technology and the technology change for giving high performance materials their properties	
for the given application.	
The technological and technical processes will be covered with a particular emphasis on tex-	
tiles for specific purposes such as protective textiles, medical textiles, interior textiles, sport	
textiles, textiles in cars etc.	
The student will learn:	
- fundamentals of technology and technics in the textile industry	
- a confident approach to the technology for high performance textile materials and their prop-	
erties	
- differences in technologies and technics for the various advanced textile materials types	
- exploitation of the acquired technical and technological background in assessing the mate-	
rial properties and performance according to the final application	
- selection of technology for the change of material properties and processing technics to fulfil	
design and application requirements	
Future Materials - Module 6 – MET6	
This course focuses on high performance textile materials relevant in a specialist engineering	6
industry.	0
High performance textiles represent one of the most dynamic sectors of the international tex-	
tile and clothing industry.	
The main purpose of the course is to supply the students with an extended overview of this	
fundamental class of textile materials including properties, applications and key develop-	
ments in the	
field.	
Materials and technological processes will be covered with a particular emphasis on textiles	
for specific purposes such as protective textiles.	
The student will learn:	
- fundamentals of high-performance textile materials behavior	
- a confident approach to high performance textile materials and their properties	
- differences in the characteristics and properties of the various advanced textile materials	
types	
- exploitation of the acquired technical background in assessing the material properties and	
exploration of the dequired technical substyreand in deceeding the material properties and	

performance according to the final application	
- materials selection on basis of material properties and processing technologies to fulfil de-	
sign and application requirements	
Fluid Mechanics and heat transfer – FMT1	
This course aims to enable the students to design their own flow system. The students will get at basic understanding of basic pipe system components and learn how to make basic calculations in order to design a system including selection of pumps and heat exchangers.	6
This course encompasses fundamental topics within Fluid Mechanics and Heat Transfer. Topics include: Bernoulli's equation, pressure loss in pipes, pump selection, design of pipe systems, heat transfer mechanisms, heat conduction and thermal networks, forced convec- tion, heat exchangers.	
Global Management – AU Course	
AU Curriculum	6
Other AU elective	
To be determined when AU decides which courses are available	6 +7
Open Material Technology Subject – OPN1	
The main purpose with this course is to introduce the student to material selection or material	7
technology in a selected area that is outside of the curriculum. The main purpose is for the	
students to aquire deep knowledge about a selected material area on their own and analyze	
the selected area by themselves on a self-produced project statement.	
Operation Mangement and Quality – OMQ1	
The main purpose of this course is to give the student a basic understanding of business ac- tivities in relation to operation and quality in operation as well as the ability to establish and	7
evaluate simple assembly lines including necessary documentation.	
The ongoing globalization of the companies' business activities and the technological pro-	
gress in terms of improving products/services, information systems and manufacturing pro-	
cesses have paved the way for new business opportunities, but also resulted in an intense	
global competition. Hence, companies have the opportunities and needs to enhance the ef-	
fectiveness and efficiency of the operation and quality activities.	
The above opportunities and needs combined with the fact that both companies and the busi-	
ness context, in which companies collaborate, entail a high level of complexity. Hence, when	
ness context, in which companies collaborate, entail a high level of complexity. Hence, when accomplishing and especially improving the operation and quality processes, the involved	
ness context, in which companies collaborate, entail a high level of complexity. Hence, when accomplishing and especially improving the operation and quality processes, the involved employees face complex challenges. Handling such challenges calls for an ability to apply	
ness context, in which companies collaborate, entail a high level of complexity. Hence, when accomplishing and especially improving the operation and quality processes, the involved employees face complex challenges. Handling such challenges calls for an ability to apply suitable analytical methods/tools to achieve the necessary knowledge and thereby make de-	
ness context, in which companies collaborate, entail a high level of complexity. Hence, when accomplishing and especially improving the operation and quality processes, the involved employees face complex challenges. Handling such challenges calls for an ability to apply suitable analytical methods/tools to achieve the necessary knowledge and thereby make de-liberate decisions.	
ness context, in which companies collaborate, entail a high level of complexity. Hence, when accomplishing and especially improving the operation and quality processes, the involved employees face complex challenges. Handling such challenges calls for an ability to apply suitable analytical methods/tools to achieve the necessary knowledge and thereby make de- liberate decisions.	7
ness context, in which companies collaborate, entail a high level of complexity. Hence, when accomplishing and especially improving the operation and quality processes, the involved employees face complex challenges. Handling such challenges calls for an ability to apply suitable analytical methods/tools to achieve the necessary knowledge and thereby make de- liberate decisions. Open Sustainability subject – OSS1 The main purpose with this course is to give the student to deep insight into sustainability	7
The above opportunities and needs combined with the fact that both companies and the busi- ness context, in which companies collaborate, entail a high level of complexity. Hence, when accomplishing and especially improving the operation and quality processes, the involved employees face complex challenges. Handling such challenges calls for an ability to apply suitable analytical methods/tools to achieve the necessary knowledge and thereby make de- liberate decisions. <u>Open Sustainability subject – OSS1</u> The main purpose with this course is to give the student to deep insight into sustainability considerations when looking at a replacement product and process on a selected given pro- ject within their field of specialization.	7
ness context, in which companies collaborate, entail a high level of complexity. Hence, when accomplishing and especially improving the operation and quality processes, the involved employees face complex challenges. Handling such challenges calls for an ability to apply suitable analytical methods/tools to achieve the necessary knowledge and thereby make de- liberate decisions. <u>Open Sustainability subject – OSS1</u> The main purpose with this course is to give the student to deep insight into sustainability considerations when looking at a replacement product and process on a selected given project within their field of specialization.	7
ness context, in which companies collaborate, entail a high level of complexity. Hence, when accomplishing and especially improving the operation and quality processes, the involved employees face complex challenges. Handling such challenges calls for an ability to apply suitable analytical methods/tools to achieve the necessary knowledge and thereby make de- liberate decisions. <u>Open Sustainability subject – OSS1</u> The main purpose with this course is to give the student to deep insight into sustainability considerations when looking at a replacement product and process on a selected given project within their field of specialization. The students should be able to use the following theories and systems acquire deep	7
ness context, in which companies collaborate, entail a high level of complexity. Hence, when accomplishing and especially improving the operation and quality processes, the involved employees face complex challenges. Handling such challenges calls for an ability to apply suitable analytical methods/tools to achieve the necessary knowledge and thereby make deliberate decisions. <u>Open Sustainability subject – OSS1</u> The main purpose with this course is to give the student to deep insight into sustainability considerations when looking at a replacement product and process on a selected given project within their field of specialization. The students should be able to use the following theories and systems acquire deep knowledge on a selected area of interest on their own within the following area: Material se-	7
ness context, in which companies collaborate, entail a high level of complexity. Hence, when accomplishing and especially improving the operation and quality processes, the involved employees face complex challenges. Handling such challenges calls for an ability to apply suitable analytical methods/tools to achieve the necessary knowledge and thereby make de- liberate decisions. <u>Open Sustainability subject – OSS1</u> The main purpose with this course is to give the student to deep insight into sustainability considerations when looking at a replacement product and process on a selected given project within their field of specialization. The students should be able to use the following theories and systems acquire deep	7

Technology - Module 5 - MET5	5 ECTS	Written examination, 4 hours Internal censor. 7-point scale Reexamination: The school can decide that the re-exami- nation can be oral.
		Hallon can be oral.

Future Materials - Module 6 – MET6	5 ECTS	Oral examination, 20 minutes External censor. 7-point scale Reexamination: As ordinary
Fluid Mechanics and heat transfer – FMT1	5 ECTS	Oral examination, 20 minutes Internal censor. 7-point scale Reexamination: As ordinary
Global Management – AU Course AU Curriculum	5 ECTS	Oral examination with prepara- tion. Internal censor 7-point scale
Open Material Technology Subject – OPN1	5 ECTS	Written - Mini project Internal censor. 7-point scale Reexamination: As ordinary
Operation Mangement and Quality – OMQ1	5 ECTS	Written - Mini project Internal censor. 7-point scale Reexamination: As ordinary
Open Sustainability subject – OSS1	5 ECTS	Written - Mini project Internal censor. 7-point scale Reexamination: As ordinary

7.2 Specialisation: Textile

This specialty aims to give students knowledge of the materials and processes used in both traditional and modern fashion and textile production. Students will equally acquire theoretical knowledge of materials used within the specialty such as yarns and fibers as well as synthetic fibers and natural fibers. Workshops and projects in the lab will teach students how to analyze and assess the properties and quality level of materials as well as what materials may be used for.

In addition to basic knowledge of processes and materials, students will also be introduced to new materials, new types of fibers like sustainable fibers, surface treatments and e-textiles so as to be able to consider the options available in future textile production.

Knowledge and understanding of materials and processes will make it possible for students to take part in product development work.

Topics

Technology module 5 (MET5) Future materials Module 6 (MET6) 6th semester project (SEP6): Open project in the area of Textile in the mentor company. Bachelor project (BPR1): Project in the area of Textile in the mentor company

7.3 Specialisation: Plastics

Throughout the last century, materials such as metal, wood, glass, clay, cotton and wool have been replaced by polymers due to the tailor-made characteristics and the low price. Nowadays, polymers are included in so many products that it would practically be impossible to avoid getting into contact with them in some form or other. But how are products containing polymers produced? How to produce a Cola bottle? How can and should a 100 m long windmill wing be manufactured in order to resist winds and changing weathers?

The keywords for this specialisation are: Thermoplastics Thermoset Biodegradable and Sustainable Plastics Design and development of future polymers Semester project about plactics Collaboration with companies within the plastics industry

Topics

Technology module 5 (MET5) Future materials Module 6 (MET6) 6th semester project (SEP6): Open project in the area of Plastics in the mentor company. Bachelor project (BPR1): Project in the area of Plastics (Polymers and Composites) in the mentor company

Students, having completed one of these specialisations, are entitled to add the specialisation on the diploma.

8 Practical Workshops

Workshop courses are practice-related courses (No ECTS). The courses are conducted during the first two semesters. There are three courses:

DM-VER1 (1st Semester): Metal and Wood laboratory work DM-VER2: (2nd Semester) Material laboratory and Chemistry DM-VER3: (2nd Semester) Knitting, Sewing and Print laboratory work

The learning objectives of the courses (knowledge, skills and competences) and test form are given in Appendix 2

9 Bachelor Project

DM-BPR1

The programme is concluded with a bachelor project (BPR1) which constitutes 20 ECTS credits of the total 210 ECTS credits of the programme and is finalized with a test. The bachelor project can be commenced on 6th semester project (SEP6) being a preproject for the bachelor project.

The Bachelor project must demonstrate individual self-critical reflection within the chosen subject, and must document the student's ability to apply engineering theories and methods. In addition, the bachelor project must reflect the student's ability to express himself/herself professionally and structured within his/her subject.

One of the prerequisites for being admitted to the bachelor project is that the student is considered to be ready for the exam, as BPR1 must be the last exam on the programme.

The Bachelor project is prepared in collaboration with the mentor company meaning individual projects. If two mentee are in the same company then the student can have a group project. However the head of programme may exceptionally dispense with this rule in case of extraordinary circumstances.

The Bachelor project comprises an independent experimental, empirical and/or theoretical examination of a practical problem formulation related to the core subjects of the programme.

The project must be documented in the form of a project report and process report comprising outline of solution, calculations, drawings, etc. If the report is a group assignment, it must be clear who wrote which sections in the report.

The students are examined in the project by an oral test/group test with individual assessment according to the learning objectives described under section 1. The basis for the exam is the bachelor project. It is a prerequisite for participation in the exam that the bachelor project is handed in within the stipulated deadline, and meets the project requirements described.

The examination may take place at the earliest when all the other tests of the programme, including internship test, have been passed. The examination is assessed on the 7-point scale and with the participation of external examiner.

Bachelor project within Special-	20 ECTS	1 oral exam based on the bachelor project report., exter-
ity area (BPR1)		nal censor

10 Exam rules applicable only for Bachelor of Engineering in Materials Science Engineering

According to the Curriculum for VIA Engineering Joint regulations the following rules further apply on top of the rules given in section 8.1 Test forms and assessment.

As some exams are taken on AU Herning specify emphasis is on the following rules.

The student are automatically enrolled for the ordinary exam and re exam if they have failed the ordinary exam even if AU have other procedure. VIA study administration will contact AU stating that all relevant students are to be enrolled in the ordinary exam. VIA study administration will contact AU stating that all relevant students are to be enrolled in the reexam for the specific courses. Students will also be informed about that.

The students are informed that VIA considered them as automatically enrolled for the ordinary exam and relevant potential reexam even if AU states otherwise to their students.

11 Title and issue of diploma

Graduates who have completed the studies under this curriculum + the joint regulations for VIA Engineering are entitled to use the title Bachelor of Engineering in Material Science and Product Design.

Furthermore, it is possible to obtain the following specialisations:

- Textile
- Plastics
- Others from time to time

Upon completion of the programme, VIA University College issues a diploma indicating title, programme, and specialisation if relevant. Furthermore, the diploma contains information about the number of ECTS credits of the individual elements, the result of the grades obtained, as well as the subjects of the interdisciplinary projects and the bachelor project. In addition, the admittance level on which the graduate was admitted to the programme is noted.

Should the education be discontinued, proof of passing study units is issued.

12 Appendix 1: Transition for students enrolled in August 2017

Transition for class DM17 (enrolled August 2017) to new study structure from 3rd Semester

Semester Theme	Course	Course	Course	Course/ Project	Project	
7. Elective course/ Specialisation	Elective course	Elective course	BPR 1 Bachelor Project (speciality)			
6. Elective courseł Specialisation	MET5 Specialty Technology Module 5	MET6 Specialty Future material Module 6	Elective course	Quality Management & Statistics	SEP 6 Semester Project (Open project within speciality)	
5. Internship	INP1 Engineering Ir	nternship (specia	ality)			
4. Business- oriented Innovation	MET4 Material Science Module 4	STR1 Business development and Strategic Management	LOG1 Logistics, purchasing and out/insourci ng.	PRO1 Project Management	INN1 Innovation (innovation week and Innovation)	SEP4 Semester project Innovation and Business development
3. Future materials	ECO1 Economy	CHE2 Applied chemistry Dying, Printing Chromotology	MET3 Material technology processes and Production management	TOC1 Theory of Science & Academic Vriting	Semeste Future (P 3 er project material
2. Quality/CSR and Development	Physics		Material technology Module 2	Chemistry Module 2	SEP2 Semester project CSR & Sustainable Production	
1. semester Innovation and development	Mathematics Statistics		Material Science Module 1	Chemistry Module 1	Drawing & Graphics Comm. Module 1	SEP1 Semester project Innovation and Development

Electives for class DM17 – students enrolled August 2017.

Technology - Module 5 - MET5	Semester
This course focuses on technology in relation to high performance textile materials relevant in	6
a specialist engineering industry.	-
High performance textiles represent one of the most dynamic sectors of the international tex-	
tile industry as well in technical/industrial textiles as in everyday textile products including ap-	
parel and interior textiles.	
The main purpose of the course is to supply the students with an extended overview of the	
technology and the technology change for giving high performance materials their properties	
for the given application.	
•	
The technological and technical processes will be covered with a particular emphasis on tex-	
tiles for specific purposes such as protective textiles, medical textiles, interior textiles, sport	
textiles, textiles in cars etc.	
The student will learn:	
- fundamentals of technology and technics in the textile industry	
- a confident approach to the technology for high performance textile materials and their prop-	
erties	
- differences in technologies and technics for the various advanced textile materials types	
- exploitation of the acquired technical and technological background in assessing the mate-	
rial properties and performance according to the final application	
- selection of technology for the change of material properties and processing technics to fulfil	
design and application requirements	
Future Materials - Module 6 – MET6	6
This course focuses on high performance textile materials relevant in a specialist engineering industry.	0
High performance textiles represent one of the most dynamic sectors of the international tex-	
tile and clothing industry.	
The main purpose of the course is to supply the students with an extended overview of this	
fundamental class of textile materials including properties, applications and key develop-	
ments in the	
field.	
Materials and technological processes will be covered with a particular emphasis on textiles	
for specific purposes such as protective textiles.	
The student will learn:	
- fundamentals of high-performance textile materials behavior	
- a confident approach to high performance textile materials and their properties	
- differences in the characteristics and properties of the various advanced textile materials	
types	
- exploitation of the acquired technical background in assessing the material properties and	
performance according to the final application	
- materials selection on basis of material properties and processing technologies to fulfil de-	
sign and application requirements	
Global Management – AU Course	0
AU Curriculum	6
Open Material Technology Subject – OPN1	
The main purpose with this course is to introduce the student to material selection or material	6
technology in a selected area that is outside of the curriculum. The main purpose is for the	5
students to aquire deep knowledge about a selected material area on their own and analyze	
the selected area by themselves on a self-produced project statement.	
Operation Mangement and Quality – OMQ1	
	7
The main purpose of this course is to give the student a basic understanding of business ac-	
tivities in relation to operation and quality in operation as well as the ability to establish and	
evaluate simple assembly lines including necessary documentation.	

The ongoing globalization of the companies' business activities and the technological pro- gress in terms of improving products/services, information systems and manufacturing pro- cesses have paved the way for new business opportunities, but also resulted in an intense global competition. Hence, companies have the opportunities and needs to enhance the ef- fectiveness and efficiency of the operation and quality activities. The above opportunities and needs combined with the fact that both companies and the busi- ness context, in which companies collaborate, entail a high level of complexity. Hence, when accomplishing and especially improving the operation and quality processes, the involved employees face complex challenges. Handling such challenges calls for an ability to apply suitable analytical methods/tools to achieve the necessary knowledge and thereby make de- liberate decisions.	
Open Sustainability subject – OSS1	
The main purpose with this course is to give the student to deep insight into sustainability considerations when looking at a replacement product and process on a selected given project within their field of specialization. The students should be able to use the following theories and systems acquire deep knowledge on a selected area of interest on their own within the following area: Material selection frameworkProcess selectionCES Edupack or HIGGS indexSimple LCA analysisPrioritization matrix on the TBL concept or other relevant factors.Processing issues.	7
Fluid Mechanics and heat transfer – FMT1	
This course aims to enable the students to design their own flow system. The students will get at basic understanding of basic pipe system components and learn how to make basic calculations in order to design a system including selection of pumps and heat exchangers.	7
This course encompasses fundamental topics within Fluid Mechanics and Heat Transfer. Topics include: Bernoulli's equation, pressure loss in pipes, pump selection, design of pipe systems, heat transfer mechanisms, heat conduction and thermal networks, forced convec- tion, heat exchangers.	

Technology - Module 5 - MET5	5 ECTS	Written examination, 4 hours Internal censor. 7-point scale Reexamination: The school can decide that the re-exami- nation can be oral.
Future Materials - Module 6 – MET6	5 ECTS	Oral examination, 20 minutes External censor. 7-point scale Reexamination: As ordinary
Fluid Mechanics and heat transfer – FMT1	5 ECTS	Oral examination, 20 minutes Internal censor. 7-point scale Reexamination: As ordinary
Global Management – AU Course AU Curriculum	5 ECTS	Oral examination with prepara- tion. Internal censor 7-point scale
Open Material Technology Subject – OPN1	5 ECTS	No examination, Mini project Internal censor. 7-point scale Reexamination: As ordinary
Operation Mangement and Quality – OMQ1	5 ECTS	No examination, Mini project Internal censor. 7-point scale

		Reexamination: As ordinary
Open Sustainability subject – OSS1	5 ECTS	No examination, Mini project
		External censor.
		7-point scale
		Reexamination: As ordinary

13 Appendix 2: Courses Materials Science Engineering Programme

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
MET1	Material Science module 1	5	The student has to	Upon completing the	Students should acquire	Requirements for attending
				course, the student has ac-	basic competences to:	examination
			* Classify the different mate-	quired basic skills to:		4 mandatory assignments
			rials by their atomic struc-		* Account for the used ma-	handed in before deadline
			ture	* Select a suitable material	terials in the main material	and accepted.
			* Identify material structure,	for a specific application	classes	_
			in order to explain the prop-	* Identify the material struc-	* Explain the differences be-	Type of examination:
			erties of the material.	ture, in order to explain the	tween the types of materials	4 hours written examination.
			* Account for the basic	properties of the material.	* Assess and reflect the ma-	Examination counts for
			methods of characterization	* Predict and asses material	terial properties and applica-	100% of the final grade.
			* Explain the applications	performance	tions	Internal censor
			and uses for the materials	* Argue for experiments and	* Assess the type of experi-	
			* Describe the processing of	tests on materials	ments/measurements to	Allowed tools:
			the materials	* Account for economic and	know the materials proper-	Course literature according
				environmental aspects	ties	to the course description
					* Explain material selection	Personal notes
					on basic level for different	Laptop
					Product development	Calculator
						Re-examination
						Re-examination can be held
						as oral exam 40 min prepa-
						ration with 20 individual oral
						examination upon a subject
						found by draw.
CHE1	Chemistry module 1	5	The students has to:	After completion of the	Students should acquire	Requirements for attending
				course, the student will be	competences in:	examination
			* Describe the atomic struc-	able to		Minimum 5 mandatory as-
			ture		* Processing chemical infor-	signments handed in before
			* Account for the periodic ta-	* Account for chemical prob-	mation like safety datasheet	deadline and accepted.
			ble and how it can be used	lems using a qualitative and	from different sources	
			* Explain the intramolecular	quantitative approach.	* Explaining chemical reac-	Type of examination:
			forces and the physical and	* Perform calculations	tions and knowle dge using	4 hours written examination.
			chemical properties of a		the right terminol 25/68	Examination counts for

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			molecule (compo-nent)	based on chemical prob-	* Applying methods to cal-	100% of the final grade.
			* Prepare calculations	lems using a qualitative as	culate stoichiometry, kinet-	Internal censor
			based on simple chemical	well as a quantitative ap-	ics and equilibrium of a	
			problems:	proach.	chemical reaction	Allowed tools:
			o Stoichiometric relation-	* Explain the intramolecular	* Explain the functional	Course literature according
			ships and calculations of	forces and the physical and	group of polymer, in order to	to the course description
			quantities in a chemical re-	chemical properties of a	predict their properties	Personal notes
			action	molecule (component)		Laptop
			o Redox and Acid/base re-	* Evaluate functional groups		Calculator
			action (strong acid/base re-	of polymers and their mean-		
			actions)	ing for the properties of the		Re-examination
			o Chemical equilibrium, in-	polymers.		Re-examination can be held
			cluding the law of chemical	* Execute experiments and		as oral exam 40 min prepa-
			equilibrium as well as shifts	analyze the outcome of the		ration with 20 individual oral
			in quality and quantity	experiment		examination upon a subject
			o Chemical kinetics and ca-	* Write and use a safety		found by draw.
			talysis like reaction rate cal-	datasheet and handling the		
			culations and calculation on	chemicals safely		
			the required activation en-			
			ergy level.			
			* Account for:			
			o Organic molecules and			
			their functional groups			
			o Organic polymers and			
			some polymerizations meth-			
			ods			
			* Execute experiments and			
			analyze the outcome of the			
SED4	Innovation and developments	F	experiment	Ctudente ulto complete di -	After the project student-	Dequiremente for ottandir :
SEP1	Innovation and development	5	Upon completion of the pro-	Students who complete the	After the project, students	Requirements for attending
	project - 1. semester		ject, students should be	project acquire skills in:	should be able to:	examination
			able to:	* Compile a project descrip	* Work interdicciplinery in a	Course assignment handed in before deadline and ac-
			* Explain the relationship	* Compile a project descrip- tion	* Work interdisciplinary in a	
			between design and mate-	* Initial analyses and de-	project that will contain ele- ments of all the 1st semes-	cepted.
			rial choice in relation to the	scription of a product, in-	ter's subject areas.	Report format
			product application	cluding the design of the	* Make a problem analysis	The project report should
			product application		wake a problem analysis	The project report should
				product and the se-lection of	0///0	

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			* Perform simple calcula-	materials	* Describe a problem (prob-	provide a written presenta-
			tions for structural issues	* Acquire initial understand-	lem formulation), as well as	tion of the innovation pro-
			* Account for the design of a	ing of innovation and prod-	action plan (total project de-	cess, the develop-ment pro-
			specific product in terms of	uct development methods	scription)	cess and the product solu-
			structure, properties, selec-	and concepts including the	* Conduct a product devel-	tion developed
			tion of materials and use	use of idea generating tools	opment process through the	Students must hand the
			* Record and process data	* Perform calculations on	analyzing phase and de-	project Report and Process
			and observations	simple structures and mate-	scription of a product, in-	Report in WISE flow
			* Analyze, assess and com-	rials.	cluding design of the project	• In addition, students could
			municate research results	* Acquire knowledge of the	and the selection of mate-	include prototypes, mock-
			orally and in writing	correlation between design	rial.	ups, models, products,
			* Obtain and use infor-	and properties of materials	* Perform calculation on	drawings, and
			mation on materials from	as well as knowledge of the	simple structures and mate-	Films/pictures on DVD etc.
			different sources	use of products in an every-	rials.	 Report structure and
			* Present prototype devel-	day life and technological	* Document the result in a	method: (should follow the
			opment orally and in writing	context.	project report and accompa-	Guideline for preparing pro-
			using terminology appropri-	* Compile a technical report	nying attachments (Appen-	ject report, MI 2017, VIA
			ate in a professional as well	* Communication orally as	dix)	and Lessons in Scientific
			as an everyday context	well as in writing and docu-	* Describe the project pro-	Methodology light/project
			* Demonstrate initial	mentation of the project pro-	cess in a process report	methodology on the project
			knowledge of innovation	cess	* Formulate the reports in a	Web)
			and development methods		concise, accurate and clear	
			* Identify and account for		language	Type of examination:
			basic innovation issues of		* Present orally and state	Oral examination.
			relevance to a development		the reasons for selected so-	At the exam, students must
			project/task		lutions and methods used	deliver an oral group
			* Put the professional		* Gain an understanding of	presentation of their project
			knowledge acquired into		the group work form and	work followed by and indi-
			perspective and apply it		solving a specific task in col-	vidual assessment and join
			both in relation to the project		laborate with a group of fel-	assessment part.
			as well as in relation to		low students	Students are given only one
			other subjects and projects			overall mark for the Project
						report, the Process report
						and their oral presentation.
						The reports carries a weight
						of 60% and the presentation
						carries a weight of 40%.
						The assessment of both the
					27/68	written reports as well as

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						the oral presentation is
						based on the 7-point grad-
						ing scale.
						The duration of the oral
						group presentation is ap-
						proximately 10 minutes pr.
						student, followed by 20
						minutes individual assess-
						ment pr. student and in the
						end a join assessment of 10
						min pr. student. After the as-
						sessment grade assess-
						ment is followed and individ-
						ual feedback is given to
						each student 15 min pr. stu-
						dent all together.
						External censor
						The Project and the Process
						report plus optional proto-
						types, mock-ups, models,
						products, drawings, and
						Films/pictures on DVD etc.
						must be handed in on time.
						Allowed tools:
						Personal notes
						Laptop
						Re-examination
						Re-examination: Any re-
						exam will take place in the
						same way as the ordinary
						exam.
						If the student receive a
						grade below 2 then the
						teacher will evaluate if the
					28/68	student can improve on the

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						project one time or if the
						student must make a new
						report. The re-exam and
						handing in of improved or
						new project will follow the
						general timeframe for reex-
						amination of projects in En-
						gineer-ing.
						If the student receives a
						grade below 2 on an im-
						proved project or if the stu-
						dent delivers in the project
						after the improvement pe-
						riod have exceeded then the
						student must have a new
						assignment.
						If the student choice not to
						deliver in the project or par-
						ticipate in the ordinary exam
						then the student must have
						a new assignment for the
						project.
						I- · -] · ·
						Engineering timeframe:
						Students who failed a se-
						mester project in January or
						June must attend an infor-
						mation meeting on the last
						Friday in June.
						At this meeting, the students
						will get information on spe-
						cific deadlines as well as the
						process of re-exam.
						They will form new groups,
						if possible in relation to the
						number of failed students at
						the individual semesters.
						Based on the feedback, the
					29/6	

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
Code			Knowieage	SKIIIS	Competences	the ordinary exam, they must prepare a new project, or the failed project must be improved. Deadline for hand in of the project is mid-August (exact date will be informed at the meeting). There will be no guidance in the period up to hand in. Oral assessment of the pro-
						ject takes place in Septem-
SSE1	Study skills for engineering students	5	The student should be able to * Explain the study activity	The student should be able to: * Apply good study tech-	The students should be able to: * Reflect on active learning	ber.
			model, CDIO, SOLO taxon- omy, VIA Engineering's DNA * Differentiate between dif-	niques for planning, reading and note-taking in an inten- tional manner * Prepare and deliver oral	and how take responsibility for own learning * Analyse and apply team dynamics such as communi-	
			ferent learning styles and identify own preferred learn- ing style * Explain the strengths and weaknesses of Problem-	presentations * Communicate correctly also taking target audience and cultural differences into consideration	cation, motivation, decision- making and conflict resolu- tion.	
			Based Learning (BPL) * Outline the stages of team development * Identify a project report	* Write a project report and a process report for the se- mester project following the VIA Engineering guidelines		
			and a process report and describe the content of the typical main sections of	 * Teambuilding and conflict handling * Explain and apply the ele- 		
			each * Explain the phases of a project (problem analysis,	ments of a project descrip- tion * Use reflection in the pro-		
			project description, problem solving, docu-mentation)	cess report to increase learning	30/68	

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			* List the features of aca-			
			demic and technical writing			
			and understand the concept			
			of plagiarism			
			* Define the characteristics			
			of reliable sources (source			
			criticism)			
			* Outline cultural traits that			
			can influence team work in			
			a project			
QSE1	Management, CSR and	5	The students is expected to	Students who complete the	The student is expected to	
	Sustainability		reach a stage where he/she	project acquire broad skills	have gained enough	Requirements for attending
			can analyze different QHSE	in:	knowledge to	examination
			management set up and ap-		be able to work with QHSE	
			ply the different quality tools	* ISO 9001, ISO 14001 and	Management or quality con-	
			on relevant issues within the	EMAS	trol after specific training	Type of examination:
			industry.	* Use SPC, Capability CpK	within the field of prefer-	Individual oral examination
			Through the course, stu-	and other different statistic	ence.	based upon a subject found
			dents will acquire	tools for continuous surveil-	* Make ISO instructionPar-	by draw.
			knowledge of development	lance	ticipate in internal audit	20 minutes preparation
			methods and concepts	* Understand and calculate	* Set up Quality control sys-	time.
			within sustainable produc-	COPQ as a mean to control	tems	Internal censor
			tion and CSR.	cost of quality	* Set up supplier evaluation	
			* By analyzing and describ-	* Use P-FMEA to prevent	and assessment procedures	Allowed tools:
			ing the production process	Quality issues in the produc-	* Participate in FMEA and	Personal notes
			and the selection of materi-	tion set up	tools like QFD	Laptop
			als for a specific product,	* Use House of Quality as a	* Make and calculate COPQ	Calculator
			the students will acquire	tool in the design phase to	* Knowledge about specific	
			knowledge and understand-	translate customer require-	product and supplier stand-	Re-examination
			ing of environmental and	ment to product characteris-	ard.	Same as ordinary
			ethical correlations in a	tics.	* Use CAPA tools	
			product's life cycle.	* Product characteristics,	* Calculate process Capabil-	
			* Students will acquire	products standards and	ity etc.	
			knowledge of the correlation	testing of these	* Show competence for ac-	
			between production and	* Use CAPA tools for Cor-	counting environmental cor-	
			materials as well as of the	rective and Preventive ac-	relations of a product's life	
			use and disposal of prod-	tions.	cycle	
			ucts.	* Design Supplier evaluation	* Demonstrate knowledge of	

31/68

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
				and supplier assessment	legislation, standards and	
				* Knowledge about supplier	labelling schemes that apply	
				standards like PPAP	to the area of sustainable	
				* Account environmental	production	
				correlations of a product's	* Identify and account ethi-	
				life cycle	cal issues in a product's life	
				* Demonstrate knowledge of	cycle	
				legislation, standards and	* Demonstrate competence	
				labelling schemes that apply	in preparing calculations	
				to the area of sustainable	based on environmental is-	
				production	sues	
				* Identify and account ethi-	* Show competence in ac-	
				cal issues in a product's life	count for the selection of	
				cycle	materials in the context of	
				* Prepare calculations	sustainability	
				based on environmental is-	* Obtain skills in literature	
				sues	search and use information	
				* Account the selection of	on materials from different	
				materials in the context of	sources	
				sustainability	* Demonstrate competence	
				* Obtain skills in literature	in knowledge of develop-	
				search and use information	ment methods used within	
				on materials from different	the area of sustainable pro-	
				sources	duction	
				* Demonstrate knowledge of		
				development methods used		
				within the area of sustaina-		
				ble production		
MET2	Material Science module 2	5	Students should gain a	Upon completing the course	Students should acquire	Requirements for attending
			broad knowledge of:	the student is expected to	basic competences in:	examination
				acquire		Minimum 5 mandatory as-
			* main materials classes	broad skills to:	* being familiar with the	signments handed in before
			* correlation between mate-		commonly used materials	deadline and accepted.
			rials structure and proper-	* select a suitable material	within each materials class,	
			ties	for a specific application	especially within metals,	Type of examination:
			* processing of materials	* identify and describe ma-	polymers, composites, wood	4 hours written examination.
			* basic methods of charac-	terial structure	and textiles	Examination counts for
			terization		32/68	100% of the final grade.

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			* familiar and interesting	* identify and explain the re-	* recalling materials struc-	Internal censor
			materials	lation between material	tures	
			* applications and uses	structure and properties	* assessing and considering	Allowed tools:
				* predict and determine ma-	materials properties and ap-	Course literature according
			Content Module 2 (2nd se-	terial performance	plications	to the course description.
			mester)	* carry out experiments and	* researching and analyzing	Personal notes, laptop and
			* Phase Diagrams	tests on materials applying	materials characteristics	calculator.
			* Phase Transformations	common test methods	* being familiar with different	
			* Types and Applications of	* account for economical	test methods for measuring	Re-examination
			Materials	and environmental aspects	the properties of materials	Re-examination will be held
			o Metal Alloys		* performing independently	in the same way as the ordi-
			o Polymers		a number of different meas-	nary exam or as oral exam .
			o Composites		urements/experiments for	
			o Wood		the purpose of deter-mining	
			o Textiles		the properties of materials	
			* Synthesis, Fabrication and		* selecting and substantiat-	
			Processing of Materials -		ing the choice of specific so-	
			Overview		lutions/materials for the de-	
			* Thermal Properties		velopment of a product	
			* Economical, Environmen-		Furthermore the students	
			tal and Societal Issues in		should be capable of seek-	
			Materials Science and Engi-		ing, validating and imple-	
			neering		menting additional	
					knowledge within the sub-	
					ject on their own hand.	
GRA1	Graphics Communication	5	Upon completion of the	After completion of the	Students should acquire	Requirements for attending
			course, students will be able	course, the student will be	competences in:	examination
			to use a number of tools	able to account for		None
			and graphic presentation		* Basic competence in how	
			methods and will be familiar	* Coloring and rendering a	to present a subject or pro-	Type of examination:
			with how to use such tools	3D model	ject in a semi professional	2 hours written examination.
			and methods for visualizing	* Preparing an exploded	manner	Examination counts for
			and presenting a concept or	view illustration for the pur-	* Make free hand sketches	100% of the final grade.
			product.	pose of visualizing the as-		Internal censor
				sembly of a product.		Evaluation of individual as-
			Students will acquire	* Preparing a video clip us-		signment last day of the lec-
			knowledge within the follow-	ing Mechanism Design or		tures. In the CAD-project
			ing main areas:	Animation of a 3D CAD	77/69	

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			* Coloring and rendering a	model.		the student should demon-
			3D model so as to make its	* Make sketches		strate ability to create 3D
			visual quality very similar to	* Preparing presentation		parts, combine the parts in
			the quality of the final prod-	material based on a simple		assemblies and create 2D
			uct.	3D-CAD model		drawings for documentation
			* Preparing an exploded	* Preparing documentation.		of products.
			view illustration for the pur-	Via different tools or free		
			pose of visualizing the as-	hand sketching:		Allowed tools:
			sembly of a product.	* Adobe Photoshop		Course literature according
			* Preparing a video clip us-	* SketchUp		to the course description
			ing Mechanism Design or	* Adobe Illustrator		Personal notes
			Animation of a 3D CAD	* Adobe Acrobat Pro		Laptop
			model.			
			* Make sketches			Re-examination
			* Preparing presentation			
			material based on a simple			
			3D-CAD model			
			* Preparing documentation.			
			For presentation purposes,			
			students may apply a num-			
			ber of IT tools such as:			
			* Adobe Photoshop			
			* SketchUp			
			* Adobe Illustrator			
			* Adobe Acrobat Pro			
SEP2	Quality/CSR & Sustainability	10	Through the project, stu-	Students who complete the	After the project, the stu-	Requirements for attending
	Project		dents will acquire	project acquire broad skills	dents should have received	examination
			knowledge of development	in:	the following competences	Course assignment handed
			methods and concepts		in relation to knowledge and	in before deadline.
			within Quality, sustainable	* Applying general	applied science:	
			production and CSR.	knowledge on Quality, CSR		Type of examination:
			* By analyzing and describ-	and sustainability on a cho-	* Work interdisciplinary in a	Oral examination
			ing the production process	sen subject.	project that will contain ele-	At the exam, students must
			and the selection of materi-	* Obtain skills in identifying	ments of all the 2nd semes-	deliver an oral group
			als for a specific product,	and accounting for quality,	ter's subject areas.	presentation of their project
			the students will acquire	environmental and CSR is-	* Have gained competences	work followed by and indi-
			knowledge and understand-	sues of relevance to a de-	for making a structure pro-	vidual assessment and join
			ing of environmental and	velopment project	34/68	assessment part.

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			ethical correlations in a	* Identify and account for	ject report based on scien-	Students are given only one
			product's life cycle.	the different issues related	tific method-ology methods	overall mark for the Project
			* Students will acquire	to a development project	given by the project Web.	report, the Process report
			knowledge of the correlation	* Put professional	* Show competence for ac-	and their oral presentation.
			between production and	knowledge acquired into	counting quality and envi-	The reports carries a weight
			materials as well as of the	perspective both in relation	ronmental correlations of a	of 60% and the presentation
			use and disposal of prod-	to the project as well as in	product's life cycle	carries a weight of 40%.
			ucts.	relation to other subjects	* Obtain skills in literature	The assessment of both the
			* Students will be trained to	and projects.	search and use information	written reports as well as
			perform calculations of the	* Develop skills in creating a	on materials from different	the oral presentation is
			environmental impact.	technical based report using	sources	based on the 7-point grad-
			* Students will aquire basic	scientific methodology	* Demonstrate competence	ing scale.
			knowledge in how to per-	methods presented on the	in knowledge of develop-	The duration of the oral
			form in-depth research and	Project Web	ment methods used within	group presentation is ap-
			testing of materials, and it is	* Develop the orally commu-	the area of sustainable pro-	proximately 10 pr. Student,
			expected that they will pro-	nication skills as well as in	duction	followed by 20 minutes indi-
			vide innovative solutions to	writing and documentation	* Demonstrate competence	vidual assessment pr stu-
			the specific problem.	of the project process	in putting professional	dent and in the end a join
			* In addition, students will		knowledge acquired into	assessment of 10 min pr.
			gain knowledge in how a		perspective both in relation	student. After the assess-
			product is manufactured.		to the project as well as in	ment grade assessment is
			* Students should be able to		relation to other subjects	followed and individual feed-
			communicate and document		and projects.	back is given to each stu-
			the results of the develop-			dent 15 min pr. student all
			ment project orally as well			together.
			as in writing.			Examination counts for
						100% of the final grade.
						Report format
						The project report should
						provide a written presenta-
						tion of sustainable and CSR
						methods and tools used to
						secure sustainable produc-
						tion.
						* Students must hand the
						project Report and Process
						Report in WISE flow as
					35/68	stated in the guideline on

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						the Project Web
						* Report structure and
						method: (should follow the
						Guideline on the Engineer-
						ing Project Web)
						* Report length etc
						(should follow the Guideline
						on the Engineering Project
						Web)
						* In addition, students could
						include prototypes, mock-
						ups, models, products,
						drawings, and
						Films/pictures on DVD etc.
						The Project and the Process
						report plus optional proto-
						types, mock-ups, models,
						products, drawings, and
						Films/pictures on DVD etc.
						must be handed in on time.
						External censor
						Allowed tools:
						Personal notes
						Laptop
						Re-examination
						Re-examination: Any re-
						exam will take place in the
						same way as the ordinary
						exam.
						If the student receive a
						grade below 2 then the stu-
						dent can improve on the
						project one time and deliv-
					77.75	ery in the approved project
					36/68	for a new exam before or

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						in the beginning of the next
						semester. If the student re-
						ceives a grade below 2 on
						an improved project or if the
						student delivers in the pro-
						ject after the improvement
						period have exceeded then
						the student must have a
						new assignment.
						If the student choice not to
						deliver in the project or par-
						ticipate in the ordinary exam
						then the student must have
						a new assignment for the
						project.
						Engineering timeframe:
						Students who failed a se-
						mester project in January or
						June must attend an infor-
						mation meeting on the last
						Friday in June.
						At this meeting, the students
						will get information on spe-
						cific deadlines as well as the
						process of re-exam.
						They will form new groups,
						if possible in relation to the
						number of failed students at
						the individual semesters.
						Based on the feedback, the
						students have received after
						the ordinary exam, they
						must prepare a new project,
						or the failed project must be
						improved.
						Deadline for hand in of the
						project is mid-August (exact
					37/68	date will be informed at the

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						meeting). There will be no
						guidance in the period up to
						hand in.
						Oral assessment of the pro-
						ject takes place in Septem-
						ber.
MET3	Material technology pro-	5	Students should acquire	Upon completing the course	Students should acquire	Requirements for attending
	cesses and production man-		basic practical knowledge of	the student is expected to	basic competences in:	examination
	agement module 3		significant manufacturing	acquire		None
			processes:	broad skills to:	* Within commonly used	
					production process for tex-	Type of examination:
			Students should gain a	* to be able to identify,	tile and plastics	Individual mini project in
			broad knowledge within tex-	choose and recommend ap-	* Characteristic textile pro-	both the textile and plastics
			tile and plastics of:	propriate manufacturing pro-	cesses (spinning, weaving,	area. Evaluation by teacher
			* main materials process re-	cesses within textile prod-	knitting, sewing, tufting, col-	in Wiseflow (masked)
			lated to the two main area	ucts at basic level.	oring and finishing, etc.)	
			* correlation between pro-	* select a suitable material	* Characteristic plastic pro-	Examination counts for
			cessing methods and prop-	for a specific process	cesses (molding, calendar-	100% of the final grade.
			erties	* analyze product in respect	ing, extrusion, injection	
			* processing of materials	to production methods	molding etc.)	Internal censor
			* applications and uses		* Within commonly used	
			* how commonly used mate-		properties in relation to pro-	To pass the course, stu-
			rials and typical products		cessing	dents must do two mini pro-
			are manufactured.		* Characteristic textile prop-	jects, with the purpose of re-
			Within the textile and plas-		erties in relation to pro-	searching the production
			tics area knowledge is re-		cesses - like dtex, filament	processes of materials
			quired in		length, filament thick-ness.	and/or products based on:
			* Non-cutting and cutting		* Characteristic plastic prop-	1. Textile fabrics 2. Plastics
			processes in general		erties in relation to pro-	product For both analysis,
			* Commonly used assembly		cesses - MFI, viscosity, mo-	the student must describe
			processes for plastic prod-		lecular weight distribution,	the product analysis in a
			ucts		Molecular weight and	written report that will be
			* Characteristic textile pro-		branching	marked. The overall mark
			cesses (spinning, weaving,			for the course will be the av-
			knitting, sewing, tufting, col-			erage of the marks of the
			oring and finishing, etc.)			two reports. Each report
			* Characteristic plastic in re-			must receive the mark of 2
			lation to processes - MFI,		38/68	or above. Re-examination:

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			viscosity, molecular weight distribution, Molecular weight and branching			Same as the ordinary exam- ination on two new project case(s).
			* Characteristic plastic pro- cesses (molding, calendar- ing, extrusion, injection molding etc.)			Allowed tools:
			 * Thermoset materials * Identification of materials * Industry 4.0 in relation to plastics. 			Re-examination Same as the ordinary exam- ination on two new project case(s).
PHY2	Electronics and Thermody- namics module 2	5	The student will acquire knowledge at an introduc- tory level in the following subjects: * Basic kinematics and ki- netics (dynamics) * Basic thermodynamics, in particular temperature and mechanisms of heat transfer * Simple direct-current elec- tric circuits	After completion of the course, the student will be able to: * Apply the kinematic defini- tions and relations valid for constant acceleration * Apply Newtons laws to solve simple problems in particle dynamics * Apply energy methods to solve simple problems in particle dynamics * Explain aspects of the overall behavior of complex systems in terms of conser- vation of energy * Apply the formula for heat conduction to simple prob- lems * Apply Ohms law and Kirchhoff's rules to simple direct-current circuits	The student will gain the competence to: * read and understand texts using language and con- cepts from basic dynamics (including energy methods), the theory of heat transfer, or the theory of simple elec- tric DC circuits * reason about physical situ- ations involving energy, heat transfer or electrical circuits * expand independently his/her knowledge and skills in the topics of the course.	Requirements for attending examination Minimum 4 mandatory assignments handed in before deadline and accepted. Type of examination: Individual oral examination based upon a subject found by draw. No preparation time Examination counts for 100% of the final grade. Internal censor Additional comments: At least one week before the exam the exam papers are handed out. At the exam only the course textbook (provided by the teacher) and a calculator are al- lowed.
						Calculator

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						Re-examination
CHE2	Applied Chemistry, Dying,	5	The student will acquire	After completion of the	Students should acquire	Requirements for attending
	Printing Chromotology mod-		knowledge of chemical pro-	course, the student will be	competences in:	examination
	ule 2		cesses and its application	able to:		Minimum 4 mandatory as-
					* Obtaining and using chem-	signments handed in be-
			* Dying of fibers, synthetics	* Handling chemicals and	ical information from differ-	fore deadline and accepted.
			and natural fibers	lab equipment using a se-	ent sources	
			* Synthetics dyes and natu-	cure and reflective approach	* Communicating	Type of examination:
			ral dyes, dyestuff principle	* Registering and treating	knowledge of chemistry	Individual oral examination
			* How to account for the	data and observations	orally and in writing using	based upon a subject found
			correlation between fabric	* Analyzing, assessing and	terminology appropriate in a	by draw.
			structure and chemical and	communicating research re-	professional as well as an	Preparation time: 40
			physical properties of fabric	sults orally and in writing	everyday context	minutes
			as well as for the application	* Make calculations on	* Demonstrating knowledge	Examination counts for
			of fabric in an everyday and	chemical reactions	of course identity and	100% of the final grade.
			technological context	* Independently select rele-	course methods	Internal censor
				vant dyes for natural and	* Identify and account for	
			Students should have	synthetics fibers	simple chemical problems	Allowed tools:
			knowledge of commonly	* Select and use an appro-	occurring	Course literature according
			used color theory and their	priate color system	* Independently select rele-	to the course description
			industrial application.		vant dyes for natural and	
			* The color theories of Goe-		synthetics fibers	Re-examination
			the and Itten		* Select and use an appro-	Re exam will be held in the
			* The color systems applied		priate color system	same way as the ordinary
			by the industry (NCS, Pan-			exam.
			tone and RAL)			oxum.
			* Colorimetric exercises *			
			Dyeing exercises			
			* Reactive, etc. * Industry			
			dyeing methods			
ECO1	Economy	5	The student will acquire	It is expected that the stu-	The student will gain the	Requirements for attending
2001	Loonomy	Ŭ,	knowledge at an introduc-	dent has established a fun-	competence to:	examination
			tory level in the following	damental understanding of		Minimum 4 mandatory as-
			subjects:	economy.	* read and understand texts	signments handed in before
			Subjects.	That the student can relate	using language and con-	deadline and accepted.
			* Is able to understand the	theory to practical condi-	cepts from basic dynamics	acadime and accepted.
			financial statement for a	tions and that the student	(including energy methods),	Type of examination:
		1	indicial statement iof a		40/68	

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			small company and make	understands the basic con-	the theory of heat transfer,	Written: 4 hours.
			an interpretation what the	cepts of financial manage-	or the theory of simple elec-	Examination counts for
			figures shows	ment, and can make simple	tric DC circuits	100% of the final grade.
			* Is able to make cost price	price quotes, investment	* reason about physical situ-	Internal censor
			calculation as well as an in-	analysis and budgets.	ations involving energy,	
			vestment calculations and		heat transfer or electrical	Allowed tools:
			budgets	Students should acquire	circuits	Course literature according
				basic competences in:	* expand independently	to the course description
				* The balance sheet and in-	his/her knowledge and skills	
				come statement	in the topics of the course.	Re-examination
				* The total accounting year		Re-examination will be held
				report		in the same way as the ordi-
				* Cash flow reporting and		nary exam or as an oral
				measurement		exam, 20 min preparation
				* Interpreting the financial		and 20 min examination.
				statement		
				* Cost Learning		
				* Cost price calculation		
				* Budgeting		
				* Investment and Financing		
SEP3	Future Materials Project	10	Through the project, stu-	Students who complete the	After the project, the stu-	Requirements for attending
			dents will acquire	project acquire skills in:	dents should be able to	examination
			knowledge of research, in-		demonstrate achieved com-	Course assignment handed
			novation, idea development	* Demonstrating broad	petence in the following	in before deadline
			methods as well as con-	knowledge in future materi-	area:	
			cepts and tools for the	als and their application	* Interdisciplinary work in a	Type of examination:
			scouting and exploitation of	possibilities [see]	project that will contain ele-	Oral examination
			new materials and technolo-	* Demonstrating enhance	ments of all the 3rd semes-	At the exam, students must
			gies required for a specific	skills in the evaluation of ad-	ter's subject areas.	deliver an oral group
			assignment	vanced material properties	* Making a structure project	presentation of their project
			By analyzing and describing	within textile or plastics. [1]	report based on scientific	work followed by and indi-
			the functionalities, the selec-	* Identify and account the	methodology methods using	vidual assessment and join
			tion of technologies and	correlations between mate-	the guidelines in the Engi-	assessment part.
			new application areas for a	rial properties, manufactur-	neering Project Web.	Students are given only one
			specific future material, stu-	ing and processing options	* Make product require-	overall mark for the Project
			dents will acquire insights	in relation to the use of the	ments and specifications	report, the Process report
			and understanding of inno-		* Perform Technologies	and their oral presentation.
			vations across the technical	* Demonstrating enhance	screening	The reports carries a weight

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			textile and plastics industry.	performance of test and	* Application areas descrip-	of 60% and the presentation
			Students will achieve	documentation of the tests	tion (needs, targets, value	carries a weight of 40%.
			knowledge on the correla-	SEP:	creation, competitive ad-	The assessment of both the
			tion between functional per-	* Record and process data	vantage, etc.)	written reports as well as
			formance, material proper-	and observations [1]	* Analyse future material in-	the oral presentation is
			ties and production pro-	* Basic knowledge in gath-	cluding:	based on the 7-point grad-
			cesses as well as	ering and using material in-	o Technical description of	ing scale.
			knowledge on the use of the	formation from different	the functional properties	The duration of the oral
			products in everyday life	sources [1]	o Definition of the product	group presentation is ap-
			and in technological con-	* Analysing, assessing and	specifications	proximately 10 pr. Student,
			texts.	disseminating orally and in	o Analysis and selection of	followed by 20 minutes indi-
			Students will achieve	writing research results	the Bio-based polymers	vidual assessment pr stu-
			knowledge on the correla-	* Communicating test re-	o Analysis and selection of	dent and in the end a join
			tion between performance,	sults orally and in writing us-	the suitable technology	assessment of 10 min pr.
			comfort, design and material	ing appropriate terminology	o Analysis of the process	student. After the assess-
			properties as well as	SEP:	sustainability	ment grade assessment is
			knowledge on the use of the	* Presenting product devel-	o Analysis of application	followed and individual feed-
			products in everyday life.	opment and innovation, e.g.	area	back is given to each stu-
			Students will be trained to	including drawings, pictures,	* Describe the project pro-	dent 15 min pr. student all
			perform in-depth research	and samples sep	cess in a process report	together.
			and testing of materials, and	* Demonstrating knowledge	* Formulate the reports in a	
			it is expected that they will	and application of innova-	concise, accurate and clear	
			provide innovative solutions	tion and development meth-	language	Examination counts for
			to the specific problem.	ods used within the area of	* Present orally and state	100% of the final grade.
			Students should be able to	future materials [1]	the reasons for selected so-	
			communicate and document	* Create a technical based	lutions and methods used	Report format
			the results of the develop-	report using scientific meth-	clear	The project report should
			ment project orally as well	odology methods	* Gain an understanding of	provide a written presenta-
			as in writing.		the group work form and	tion of Future material pro-
					solving a specific task in col-	ject.
					laborate with a group of fel-	* Students must hand the
					low students	project Report and Process
						Report in WISE flow as
						stated in the guideline on
						the Project Web
						* Student must hand in the
						Group Formation and Group
						contract and Project De-
					42/68	scription at the dead-line

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						given by Wiseflow during
						the project period.
						* Report structure and
						method: (should follow the
						Guideline on the Engineer-
						ing Project Web)
						* Report length etc
						(should follow the Guideline
						on the Engineering Project
						Web)
						* In addition, students could
						include prototypes, mock-
						ups, models, products,
						drawings, and
						Films/pictures on DVD
						etc.
						The Project and the Process
						report plus optional proto-
						types, mock-ups, models,
						products, drawings, and
						Films/pictures on DVD etc.
						must be handed in on time.
						External censor
						Allowed tools:
						Personal notes
						Laptop
						Laptop
						Re-examination
						Re-examination: Any re-
						exam will take place in the
						same way as the ordinary
						exam.
						If the student receive a
						grade below 2 then the
						teacher wil evaluate if the
						student can improve on the
					43/68	project one time or if the

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						student must make a new
						report. The re-exam and
						handing in of improved or
						new project will follow the
						general timeframe for reex-
						amination of SEP projects in
						Engineering.
						If the student receives a
						grade below 2 on an im-
						proved project or if the stu-
						dent delivers in the project
						after the improvement pe-
						riod have exceeded then the
						student must have a new
						assignment.
						If the student choice not to
						deliver in the project or par-
						ticipate in the ordinary exam
						then the student must have
						a new assignment for the
						project.
						Engineering timeframe:
						Students who failed a se-
						mester project in January or
						June must attend an infor-
						mation meeting on the last
						Friday in June.
						At this meeting, the students
						will get information on spe-
						cific deadlines as well as the
						process of re-exam.
						They will form new groups,
						if possible in relation to the
						number of failed students at
						the individual semesters.
						Based on the feedback, the
						students have received after
					44/68	

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						must prepare a new project, or the failed project must be improved. Deadline for hand in of the project is mid-August (exact date will be informed at the meeting). There will be no guidance in the period up to hand in. Oral assessment of the pro- ject takes place in Septem- ber.
PRO1	Project Management	5	Upon completion of the course, the students should be able to: * Have knowledge of the basic paradigms, perspec- tives, theories, models and concepts of the subject area * Be able to describe, clas- sify and structure theories, models and methods * Have knowledge of the as- sumptions upon which the subject area as well as the theories, models, methods and techniques relating to this area are based * Have knowledge of how to combine theories, models,	After completion of the course, the student should be able to: - Use and combine theories, models, methods and tech- niques - Identify and analyze prac- tice-based project work - Present and assess alter- native project design op- tions - Assessing the control and management challenges re- lated	After completion of the course, the students should be able to: * Analyze, plan, adapt and manage projects * Understand and use pro- ject as a dynamic and inte- grated part of the company strategy and organization. * Able to analyze, structure, plan, manage and docu- ment projects and should be able to put different types of projects into perspective.	Requirements for attending examination None Type of examination: Individual oral exam based on a synopsis. Examination counts for 100% of the final grade. Internal censor Allowed tools: Course literature according to the course description Personal notes Laptop Re-examination Any re-exam will take place in the same way as the ordinary exam on new synopsis.
LOG1	Logistics, Purchasing and Out/Insourcing	5	Students should gain a broad knowledge of: * Logistics in relation to Supply chain management	Upon completing the course the student is expected to acquire broad skills to:	It is expected that the stu- dent has established a fun- damental understanding of logistics, purchasing and In/Outsourcing.	Requirements for attending examination None

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			* Purchasing and inventory	* Logistics goals and logis-		Individual oral examination
			management	tics strategy	That the student can relate	based upon a miniproject
			* In/outsourcing and Make /	* Logistics customer focus	theory to practical condi-	Examination counts for
			Buy analysis"	* Purchase Management	tions and that the student	100% of the final grade.
				* Transport and 3.party lo-	understands the basic con-	Internal censor
				gistics	cepts of logistics, inventory	
				* Warehouse management	management, purchasing .	Allowed tools:
				* Inventory management		Course literature according
				* Operations and material	Students should acquire	to the course description
				management	basic competences in:	
				* Logistics information tech-	* The relationship between	Re-examination
				nology incl. ERP	supply chain management	Re exam will be held in the
				* Human resources and or-	and logistics	same way as the ordinary
				ganizing for logistics	* The logistics influence on	exam (new mini project).
				* Logistics financial perfor-	enterprise competitiveness	
				mance	and economic influence	
				* Purchasing	* Know the logistics cus-	
				* Make / buy analysis	tomer service elements	
					* Could explain the purchas-	
					ing process	
					* Understand the basic	
					ideas of JIT and Lean	
MET4	Material Science Module 4	5	The students is expected to	Upon completing the course	Upon completing the course	Requirements for attending
			reach a stage where he/she	the student is expected to	the student is expected to	examination
			can relate and reflect over	acquire the skills to:	have gain competences in:	None
			the material range within the			
			field of textile and plastics.	* Identify and describe poly-	* Being familiar with the tex-	Type of examination:
			Students should gain	mer materials for specific	tile and plastics materials	Individual project approx.
			knowledge of:	advanced applications of	used for different perfor-	10-20 pages.
				textiles and plastics	mance applications.	Individual presentation fol-
			* Polymer potential and ap-	* Relate properties of high-	* Assessing and considering	lowed by an individual ex-
			plication possibilities with	performance textile and	materials properties and ap-	amination. Duration presen-
			the textile and plastics area	plastics materials with the	plications in relation to	tation 15-20 minutes
			* Understand the chemistry	chemical com-position and	chemical structure and	Examination counts for 75%
			of polymers on a high level	properties on advance level	properties.	of the final grade. Course
			and how it influence the pol-	* predict and determine ma-	* Researching and analyz-	assignment accounts for
			ymer properties within the	terial performance	ing materials characteristics	25% of final grade.
			textile and polymer area		with special emphasis on	Internal censor

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			 * Standard and testing methods * Interesting and innovative materials * Applications and uses 	 * identify and measure relevant material parameters for a specific purpose applying standard or customized test methods * Account for economical and environmental aspects related to the materials 	chemical composition. * Being familiar with stand- ard test methods for as- sessing the properties of textile and plastics materials	Allowed tools: All <u>Re-examination</u> Any re-exam will take place in the same way as the ordi- nary exam. New assign- ments.
STR1	Business Development and Strategic Management	5	Upon completion of the course, the students should be able to: * Understand organizational behaviour and structures * Understand the concept of management and leader- ship including the different schools of management and leadership * Understand the basis is- sues of business strategy and business development * Understand the elements of the strategic planning process and a range of stra- tegic tools.	After completion of the course, the student should be able to: * Design, evaluate and chose appropriate organiza- tional structures * Evaluate and choose rele- vant management and lead- ership strategies * Formulate mission, vision and values * Manage organizational change processes * Manage organizational business development and blue ocean strategies * Analyze the external macro and micro environ- ment in the context of busi- ness strategy making * Analyze the internal envi- ronment in the context of business strategic options * Design, evaluate and chose appropriate business	After completion of the course, the students should be able to: * Understand the basic is- sues of management and leadership * Apply the appropriate kind of management/leadership in a given situational context * Understand the basis is- sues of business strategy * Apply different strategic tools * Understand change man- agement * Plan and implement a stra- tegic planning process in an organizational context	Requirements for attending examination None Type of examination: Individual oral exam based on a synopsis. Examination counts for 100% of the final grade. External censor Allowed tools: Course literature according to the course description Personal notes Laptop Re-examination Any re-exam will take place in the same way as the ordinary exam.

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
DM-INO1	Engineering Innovation Weeks (Materials Science Engineering)	5	After having successfully completed the course, the students will have gained: An understanding of innova- tion and its uses within the field of engineering- Knowledge about Design Thinking (double diamond) processKnowledge about how to create a systematic and measurable progress in innovation tasks	After having successfully completed the course, the students will be able to:En- gage in innovative pro- cesses in a cross-/inter- /multidisciplinary set- tingConceive, plan, and ex- ecute innovative ideasWork methodically with innova- tionCollect and apply rele- vant information about tech- nologies, markets and end users	After having successfully completed the course, the students will have gained competences in:Introducing innovative ideas into project workContributing own pro- fessional skills in teams with the objective of solving problems by using innova- tive processes and mod- elsClarifying multidiscipli- nary group competencies	Group presentation of pro- ject in both shared-weeks as well as mono-weeks.
SEP4	Innovation and Business Development	5	Through the project, stu- dents will acquire knowledge of research, in- novation, idea development methods as well as con- cepts and tools for the crea- tion of the business model based on a specific assign- ment. Upon completion of the pro- ject, students should be able to: * To analyze a product, the related issues and the po- tential market applications, students will develop a busi- ness model on the basis of a reference to the Osterwal- ders canvas model. * To perform a thorough re- search on the materials composition, properties and functional integration, it is	Students who complete the project acquire broad skills within the following area de- pending on the subject given by the company: * Analyze and account for the correlations between material properties in rela- tion to the use of the prod- ucts * Record and process data and observations * Research, validate and use material information from different sources * Analyze, assess and dis- seminate orally and in writ- ing research results * Present prototype devel- opment, e.g. including draw- ings, pictures, mock-up and samples * Demonstrate structured	After the project, the stu- dents should be able to demonstrate broad knowledge of materials and their application possibili- ties: * Work interdisciplinary in a project that will contain ele- ments of all the 4th semes- ter's subject areas. * Make a structure project report based on scientific methodology methods. * Conduct a product devel- opment process through the analyzing phase and de- scription of a product, in- cluding design of the project and the selection of mate- rial. * Perform market product description (needs, targets, value creation, competitive	Requirements for attending examination Course assignment handed in before deadline Type of examination: Oral examination At the exam, students must deliver an effective and pro- fessional presentation of their project work involving different tools as Power- Points, sketches, pictures, prototypes, etc. Students are given only one overall mark for the Project report, the Process report and their oral presentation. The reports carries a weight of 60% and the presentation carries a weight of 40%. The assessment of both the written reports as well as the oral presentation is

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			expected that students gen-	knowledge of innovation	advantage, etc.)	based on the 7-point grad-
			erate and propose concrete	and development methods	* Make market analysis in-	ing scale.
			solutions - documented,	* Demonstrate and present	cluding:	The duration of the oral
			tested and validated - suita-	basic skill in making product	o Estimates of market size	presentation is approxi-
			ble for solving the specific	marked product descriptions	and growth potential	mately 20 minutes followed
			problem.	* Obtain basic skills in	o Analysis of market seg-	by a Q & A and assessment
			* Present prototype devel-	marked analysis	ments and target groups	session of 15 minutes.
			opment orally and in writing	* Obtain basic knowledge in	o Analysis of competitors	
			using terminology appropri-	resource analysis	and competition	Examination counts for
			ate in a professional as well	* Obtain basic knowledge in	o Estimates of market	100% of the final grade.
			as an everyday context	making economical and fi-	share, volume and price	
			* Demonstrate initial	nancial calculation on the	strategy	Report format
			knowledge of innovation	given project and make a	* Document the result in a	 The project report should
			and development methods	Conclusion and recommen-	project report and accompa-	provide a written presenta-
			Students will achieve	dations - the idea is eco-	nying attachments (Appen-	tion of the innovation pro-
			knowledge on the correla-	nomically attractive to pur-	dix)	cess, the develop-ment pro-
			tion between performance,	sue?	* Make basic resource anal-	cess and the product solu-
			comfort, design and ma-	* Identify and account for	ysis (industrial, financial	tion developed
			terial properties as well as	the different issues related	and human)	Students must hand the
			knowledge on the use of the	to a development project	* Calculate economic and fi-	project Report and Process
			products in everyday life.	* Prepare a business model	nancial assessment of the	Report in WISE flow
			Students will be trained to	including a thorough de-	main consequences over a	• In addition, students could
			perform in-depth research	scription of the added value	3-year horizon	include prototypes, mock-
			and testing of materials, and	- seen through the custom-	* Describe the project pro-	ups, models, products,
			it is expected that they will	er's eyes - of the product	cess in a process report	drawings, and
			provide innovative solutions	you want to market	* Formulate the reports in a	Films/pictures on DVD etc.
			to the specific problem.	* Understand and make	concise, accurate and clear	 Report structure and
			Students should be able to	Product requirements speci-	language	method: (should follow the
			communicate and document	fication	* Present orally and state	Guideline for preparing pro-
			the results of the develop-	* Create a technical based	the reasons for selected so-	ject report, MI 2017, VIA
			ment project orally as well	report using scientific meth-	lutions and methods used	and Scientific Methodology)
			as in writing.	odology methods	* Gain an understanding of	
				* Communication orally as	the group work form and	The Project and the Process
				well as in writing and docu-	solving a specific task in col-	report plus optional proto-
				mentation of the project pro-	laborate with a group of fel-	types, mock-ups, models,
				cess	low students	products, drawings, and
						Films/pictures on DVD etc.
						must be handed in on time.
					49/68	

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						External censor
						Allowed tools:
						Personal notes
						Laptop
						Re-examination
						Re-examination: Any re-
						exam will take place in the
						same way as the ordinary
						exam.
						If the student receive a
						grade below 2 then the stu-
						dent can improve on the
						project one time and deliv-
						ery in the approved project
						for a new exam before or in
						in the beginning of the next
						semester. If the student re-
						ceives a grade below 2 on
						an improved project or if the
						student delivers in the pro-
						ject after the improvement
						period have exceeded then
						the student must have a
						new assignment.
						If the student choice not to
						deliver in the project or par-
						ticipate in the ordinary exam
						then the student must have
						a new assignment for the
						project.
						P. 01000
						Engineering timeframe:
						Students who failed a se-
						mester project in January or
						June must attend an infor-
						mation meeting on the last
					50/6	8 Friday in June.

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						At this meeting, the students
						will get information on spe-
						cific deadlines as well as the
						process of re-exam.
						They will form new groups,
						if possible in relation to the
						number of failed students at
						the individual semesters.
						Based on the feedback, the
						students have received after
						the ordinary exam, they
						must prepare a new project,
						or the failed project must be
						improved.
						Deadline for hand in of the
						project is mid-August (exact
						date will be informed at the
						meeting). There will be no
						guidance in the period up to
						hand in.
						Oral assessment of the pro-
						ject takes place in Septem-
						ber.
INP 1	Internship (DM)	30	The student must:	The student must:	The student must:	
			 gain knowledge of theory, 	 be able to apply the meth- 	 be able to handle complex 	
			methodology and practice	odologies and tools of one	and development oriented	
			within a profession or one or	or more fields of study and	situations in study or work	
			more fields of study	to apply skills related to	contexts	
			 be able to understand and 	work within the field/fields of	 be able to independently 	
			reflect on theories, method-	study or profession	participate in professional	
			ology and practice	 be able to assess theoreti- 	and interdisciplinary collabo-	
			• be aware of non-technical	cal and practical problems	ration with a professional	
			- societal, health and	and to substantiate and se-	approach	
			safety, environmental, eco-	lect relevant solutions	 be able to identify own 	
			nomic and industrial - impli-	 be able to communicate 	learning needs and to or-	
			cations of engineering prac-	professional issues	ganise own learning in dif-	
			tice		ferent learning environ-	
					ments	<u> </u>

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
					 promote an engineering- 	
					oriented approach during	
					the remaining semesters on	
					the Bachelor programme	
					 develop personal skills re- 	
					quired for the professional	
					career as engineer	
					 form the basis for develop- 	
					ing personal/professional	
					network	
MET5	Technology - Module 5	5	The students is expected to	Upon completing the course	Upon completing the course	Requirements for attending
			reach a stage where he/she	the student is expected to	the student is expected to	examination
			can relate and reflect over	acquire	have gain competences in:	Course assignment handed
			new materials and new	the skills to:		in before deadline
			technology in the field of		- Being familiar with tech-	
			preference.	- Identify and describe tech-	nics and processes of the	Type of examination:
			Students should gain	nological and technical pro-	textile materials used for dif-	Written: 4 hours
			knowledge of:	cesses for specific ad-	ferent high- performance	Course assignment ac-
			- Technology for high-per-	vanced applications of tex-	applications.	counts for 25% of final
			formance materials and	tiles	- Assessing and considering	grade
			their properties	- Relate technology and	the different processes for	Examination accounts for
			- Processing and finishing of	technical processes to prop-	obtaining materials proper-	75% of final grade
			high-performance textiles	erties of high-performance	ties and ap-plications	Internal censor
			- Technology for change in	textile materials with their	- Researching and analyz-	
			surface properties of high-	uses	ing technics and processes	Allowed tools:
			performance materials	- Predict technics in pro-	for obtaining materials char-	All
			- Standard and testing	cesses for high-perfor-	acteristics	
			methods for properties of	mance and new application	- Being familiar with stand-	Re-examination
			high-performance textiles	of materials	ard test methods for as-	If the student receives a
			- New methods for pro-	- Identify the technic and an-	sessing the properties of ad-	grade below 2 then the stu-
			cessing	alytical measurements rele-	vanced textile materials for	dent must go to a reexam.
				vant material parameters for	describing the technics to	The reexam can be oral in-
				a specific purpose applying	obtain that	stead of written depending
				standard or customized test	- Selecting and substantiat-	on the number of students
				methods	ing the choice of specific	participating in the reexam.
				- Account for economic and	technical and processing	
				environmental aspects	solu-tions/materials for the	
				- Recognize the importance		

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
				using the processes of ad-	development of a high-per-	
				vanced textile materials in	formance textile materials	
				different fields	- Taking part in corporation	
				-	with relevant suppliers and	
					customers for the purpose	
					of selecting the most suita-	
					ble materials and/ or devel-	
					oping new materials for ad-	
					vanced applications by the	
					use of different technical	
					processes.	
					Furthermore the students	
					should be capable of seek-	
					ing, validating and imple-	
					menting additional	
					knowledge within the sub-	
					ject on their own hand within	
					the following areas.	
					- Non-woven technics	
					- Fiber manufacturing pro-	
					cesses for man-made fibers	
					- Technics and treatment of	
					natural fibers to making	
					them for high-performance	
					materials	
					- Technics for biomaterials	
					and	
					- Chemicals used in the tex-	
					tile processes	
					- Processes for obtaining	
					the relevant properties of	
					high-performance materials	
					- Technics for making micro-	
					fibers	
					- The chemical and technics	
					in making functional finish-	
					ing of materials	
					- LCA of high-performance	
					materials and pro53/568 for	

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
					them	
					- The possibility of recycling	
					high-performance materials	
MET6	Future Materials - Module 6	5	The students is expected to	Upon completing the course	- Assessing and considering	
			reach a stage where he/she	the student is expected to	materials properties and ap-	Requirements for attending
			can relate and reflect over	acquire	plications	examination
			new materials in the field of	the skills to:	- Researching and analyz-	Course assignment handed
			preference.		ing materials characteristics	in before deadline
				- Identify and describe ma-	- Being familiar with stand-	
			Students should gain	terials and technological	ard test methods for as-	Type of examination:
			knowledge of:-	processes for specific ad-	sessing the properties of ad-	Individual presentation of
			- High-performance fibers	vanced applications of tex-	vanced textile materials	abstract followed by an indi-
			and their properties	tiles	- Selecting and substantiat-	vidual examination.Duration
			- Processing and finishing of	- Relate properties of high-	ing the choice of specific so-	examination: 5 min presen-
			high-performance textiles	performance textile materi-	lutions/materials for the de-	tation follow by 10-15 min
			- Standard and testing	als with their uses	velopment of a high perfor-	examination.
			methods	- Predict and determine ma-	mance textile materials	Grading on 7 scale.
			- Interesting and innovative	terial performance	- Taking part in corporation	External censor
			materials	- Identify and measure rele-	with relevant suppliers and	
			- Applications and uses	vant material parameters for	customers for the purpose	Allowed tools:
				a specific purpose applying	of selecting the most suita-	All
				standard or customized test	ble materials and/ or devel-	
				methods	oping mew materials for ad-	Re-examination
				- Account for economical	vanced applications	Same as original examina-
				and environmental aspects	Furthermore the students	tion on new assignment
				- Recognize the importance	should be capable of seek-	
				of advanced textile materi-	ing, validating and imple-	
				als in different fields	menting additional	
					knowledge within the sub-	
					ject on their own hand within	
					the following areas.	
					- Elastomeric fibers	
					- Fibers with Chemical, Heat	
					or Fire Resistance	
					- Other Special-Use Fibers	
					- High performance textiles	
					for protective clothing	

en Material Technology				 High performance textiles for heat and fire protection 	
en Material Technology				- Functional Finishes for Protection	
oject (Class DM17)	5	The student is expected to reach a stage where he/she can acquire deep knowledge and analyze dif- ferent material aspects on a new material area on rele- vant issues within the indus- try.	The student is expected to apply the following relevant tools, scientific descriptions and methods to analyze the chosen material into depth: - Material and chemistry structure - Material constraints - Environmental considera- tion - TBL perspectives - Legislation issues - Material substitution tools - Processing issues - Business perspective	The students are expected to have gained enough knowledge on their own to be able to look into a new material area and to come with relevant recommenda- tions on the given subject at a qualified level in relation to - Material usage and rele- vant scarce resources - Material substitution - TBL perspectives - Environmental considera- tion - Relevant legislation issues - Relevant processing is- sues - Business perspectives	Requirements for attending examination None Type of examination: To pass the course, students must hand in a mini project of 15-20 pages excluding appendix (following the normal guidelines for projects) The report will be given a mark directly without oral presentation. In order to pass the course the report must be assessed at least with the mark of 2. Examination accounts for 100% of final grade Internal censor Allowed tools: Course literature according to the course description Personal notes Laptop Calculator Re-examination Same as the ordinary examination on a new project subject.

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
VER3	Knitting, Sewing and Print	0	Upon completion of the	Students who complete the	After the workshop, stu-	Requirements for attending
	laboratory work		workshop, students should	workshop have acquire	dents should be able to:	examination
			be able to:	skills in:		Course assignment handed
					 Work in the knitting and 	in be-fore deadline and
			• Perform simple manufac-	 Knitting work 	sewing area on simple item	mandatory participation
			turing process in knitting	 Sewing work 	• Work in the printing lab on	
			and sewing machines	 Printing work 	the different type of ma-	Type of examination:
			• Perform simple manufac-	 Safety work within textile 	chines on simple item	Mandatory participation in
			turing process with printing	machines and lab areas	Understand safety proce-	the full workshop and ap-
			on different process		dure within the relevant ar-	proval of finished products
			Demonstrate initial		eas	within the three areas
			knowledge about safe work			The assessment of the
			standard within the different			mandatory participation and
			textile machine and lab ar-			approval of finished prod-
			eas			ucts on a pass / non pass
						basis.
						Allowed tools:
						Personal notes, laptop,
						Re-examination
						Re-examination: Any re-
						exam will take place in the
						same way as the ordinary
						exam. New work-shop next
						year.
VER1	Metal and Wood laboratory	0	Upon completion of the	Students who complete the	After the workshop, stu-	Requirements for attending
	work		workshop, students should	workshop have acquire	dents should be able to:	examination
			be able to:	skills in:		Course assignment handed
					After the workshop, stu-	in be-fore deadline and
			• Perform simple manufac-	Metal work	dents should be able to:	mandatory participation
			turing process on metal and	Wood work	 Work in the metal and 	
			wood	 Safety work 	wood workshop on simple	Type of examination:
			Demonstrate initial	-	item	Mandatory participation in
			knowledge about safe work		 Understand safety proce- 	the full workshop and ap-
			standard for metal		dure within metal and wood	proval of finished products
			and wood work.		workshop	within the three areas

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						The assessment of the mandatory participation and approval of finished prod- ucts on a pass / non pass basis.
						Allowed tools: Personal notes, laptop, <u>Re-examination</u> Re-examination: Any re- exam will take place in the same way as the ordinary exam. New work-shop next year.
VER2	Material laboratory and Chemistry	0	Upon completion of the workshop, students should be able to: • Perform simple material testing on fiber, yarn and textile • Perform simple chemical testing • Demonstrate initial knowledge about safe work standard for lab work. • Understand Safety and health datasheet and requi- rement therefor. •	Students who complete the workshop have acquire skills in: • Material testing • Chemistry testing • Technical report testing • Health and Safety Datasheet • Safety work	After the workshop, stu- dents should be able to: • Work in the Material lab on their different project • Set up test requirement and test plans for fiber, yarn and textile • Set up simple chemical testing • Make safety and health work	Requirements for attending examination Course assignment handed in be-fore deadline and mandatory participation Type of examination: Mandatory participation in the full workshop and approval of finished products within the three areas The assessment of the mandatory participation and approval of finished products within the three areas The assessment of the mandatory participation and approval of finished products basis.
	l	1	1	1	57/68	Re-examination

PHY1 Statics and Machanics of Materials Module 1 5 The student will acquire throwlodge at an introduc- tor level in the toriowing subjects: After completion of the course, the student will gain com- petince to: The student will gain com- petince to: Reacommination: Any re- exame will use phoor. In the sum of the student will acquire throwlodge at an introduc- tor level in the toriowing subjects: The student will gain com- petince to: Reacommination: Any re- summers work-shop courts summers handed in below addition and vectors in the toriowing subjects: The student will gain com- petince to: Reacommination: Any re- summers handed in below addition at subtech will be and conservation acceleration Reacommination: Any re- summers handed or sum of the toriowing subjects: The student will gain com- petince to: Reacommination: Any potence to: Reacommin	Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
tion level in the following subjects:able to,Minimum 6 mandatory as- sigments handed in before a daypty the kinematic definit uotions involving kinemati- tions and relations valid for itons and relations valid for it	PHY1		5			-	exam will take place in the same way as the ordinary exam. New work-shop next year. <u>Requirements for attending</u>
		Materials Module 1		tion level in the following subjects: * Units, Physical Quantities and Vectors * Basic kinematics, motion along a straight line * Newton's laws of motion * Work and Kinetic Energy * Potential Energy and en- ergy conservation * Static equilibrium and Elasticity * Stresses and strains in	able to, * Apply the kinematic defini- tions and relations valid for constant acceleration * Apply Newtons laws to solve simple problems in particle dynamics * Apply energy methods to solve simple problems in particle dynamics * Explain aspects of the overall behavior of complex systems in terms of conser- vation of energy * Calculate tensile and com- pressive stress and strains in materials * Explain aspects of reflec- tion and refraction and dis-	* Reason about physical sit- uations involving kinemat- ics, dynamics, energy, stresses/strains and light * In addition, the student will have the competence to ex- pand independently his/her knowledge and skills	Minimum 6 mandatory as- signments handed in before deadline and accepted. <u>Type of examination</u> : Individual oral examination based upon a subject found by draw. No preparation Examination counts for 100% of the final grade. Internal censor. At least one week before the exam the exam papers are handed out. At the exam, only the text- books delivered by the teacher are allowed.

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						Course literature according
						to the course description
						Re-examination
						As ordinary
QM1	Quality management and	5	The students is expected to	The student is expected to	The student is expected to	
	statistics (Class DM17)	-	reach a stage where he/she	apply the following tools and	have gained enough	Requirements for attending
	,		can analyze different quality	methods and to criticize	knowledge to be able to	examination
			management set up and ap-	other companies on the fol-	work with in a quality de-	Course assignment handed
			ply the different quality tools	lowing tools and methods:	partment in relation to Qual-	in before deadline
			on relevant issues within the	- ISO 9001	ity Management or quality	
			industry.	- Use SPC, Capability CpK	control after specific training	Type of examination:
			The students is expected to	and other different statistic	within the field of prefer-	Group presentation followed
			give/teach others on ob-	tools for continuous surveil-	ence.	by an individual examina-
			tained knowledge on quality	lance	- Make ISO instruction	tion.
			management and control	- Understand and calculate	- Participate in internal audit	Duration presentation: 15-
			from company visit(s) to	COPQ as a mean to control	- Set up Quality control sys-	20 minutes
			other student in relation to	cost of quality.	tems	The students must hand-in
			the industry where the com-	- Use P-FMEA to prevent	- Set up supplier evaluation	a group poster presenta-
			pany is placed. (Textile or	Quality issues in the produc-	and assessment procedures	tions and present the post-
			Furniture and product type	tion set up	- Participate in FMEA and	ers to the other groups in
			with the given specialty).	- Use House of Quality as a	tools like QFD	the course. The presenta-
			Especially emphasis must	tool in the design phase to	- Make and calculate COPQ	tion is followed by an indi-
			be given to the product	translate customer require-	- Knowledge about specific	vidual examination on the
			characteristics and supply	ment to product characteris-	product and supplier stand-	assignment demonstrating
			chain set up in the specialty	tics.	ard.	the knowledge, skills and
			area.	- Product characteristics,	- Use CAPA tools	competences developed
				products standards and	- Calculate process Capabil-	throughout the course and
				testing of these - Use CAPA tools for Cor-	ity etc.	in the research phase.
				- Use CAPA tools for Cor- rective and Preventive ac-		Course assignment ac- counts for 25% of the final
				tions.		grade
				- Design Supplier evaluation		Examination accounts for
				- Design Supplier evaluation	50/68	Examination accounts 101

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
				and supplier assessment		75% of final grade
				- Knowledge about supplier		Internal censor
				standards like PPAP		
				- Random check		Allowed tools:
						Course literature according
						to the course description
						Personal notes
						Laptop
						Re-examination
SEP6	Open Project	10	Through the project, stu-	Students who complete the	After the project, the stu-	
			dents will acquire specific	project acquire skills in:	dents should be able to	Requirements for attending
			knowledge within the area		demonstrate achieved com-	examination
			of interest in the field of Ma-	- Demonstrating broad	petence in the following	Course assignment handed
			terial Science and Product	knowledge in material sci-	area:	in before deadline
			Design	ence and their application		
				possibilities []]	- Interdisciplinary work in a	Type of examination:
			By analyzing and describing	- Demonstrating enhance	project that will contain ele-	Oral examination
			the functionalities, the selec-	skills in the evaluation of	ments of different subject in	External censor
			tion of technologies and	material properties [SEP]	the study program so fare.	At the exam, students must
			new application areas for a	- Identify and account the	- Making a structure project	deliver an effective and pro-
			specific future material, stu-	correlations between mate-	report based on scientific	fessional presentation of
			dents will acquire insights	rial properties, manufactur-	methodology methods using	their project work involving
			and understanding of inno-	ing and processing options	the Project guidance in the	different tools as Power-
			vations across the technical	in relation to open project [SEP]	Engineering Project Web.	Points, sketches, pictures,
			textile and furniture industry.	- Demonstrating enhance	- Application areas descrip-	prototypes, etc.
				performance of test and	tion (needs, targets, value	Students are given only one
			Students will achieve	documentation of the tests if	creation, competitive ad-	overall mark for the Project
			knowledge on the correla-	relevant in the open project	vantage, etc.)	report, the Process report
			tion between performance,	SEP:	- Analyse material like:	and their oral presentation.
			production, design and ma-	- Record and process data	o Technical description of	The reports carries a weight
			terial properties as well as	and observations if relevant	the functional properties	of 60% and the presentation
			knowledge on the use of the	in the open project.	o Definition of the product	carries a weight of 40%.
			products in everyday life in	- Basic knowledge in gather-	specifications	The assessment of both the
			relation to the given project.	ing and using material infor-	o Analysis and selection of	written reports as well as
			Students will be trained to	mation from different	the suitable technology	the oral presentation is
			perform in-depth research	sources SEP	o Analysis of the process	based on the 7-point grad-
			and testing of materials, and	- Analysing, assessing and	sustainability	ing scale.

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			it is expected that they will	disseminating orally and in	o Analysis of application	The duration of the oral
			provide innovative solutions	writing research results [EP]	area	presentation is approxi-
			to the specific problem in re-	- Communicating test re-	- Describe the project pro-	mately 20 minutes followed
			lation to the given project.	sults orally and in writing us-	cess in a process report	by a Q & A of 15 min and
				ing appropriate terminology	- Formulate the reports in a	assessment session of 15
			Students should be able to	SEP:	concise, accurate and clear	minutes.
			communicate and document	- Presenting product project	language	
			the results of the develop-	e.g. including drawings, pic-	- Present orally and state	
			ment project orally as well	tures, and samples [1]	the reasons for selected so-	Report format
			as in writing.	- Create a technical based	lutions and methods used	The project report should
				report using scientific meth-	clear	provide a written presenta-
				odology methods	- Gain an understanding of	tion of the Open project.
					solving a specific task in	- Students must hand the
					collaborate with a group of	project Report and Separate
					fellow students, company or	Process Report in Wiseflow
					other stakeholders	as stated in the Project
						guidance on the Engineer-
						ing Project Web.
						- Student must hand in a
						Project Description at the
						deadline given by Wiseflow
						during the pro-ject period.
						- Report structure and
						method: (must follow the
						Project Guidance on the En-
						gineering Project Web)
						- Report length etc.: (must
						follow the Project Guidance
						on the Engineering Project
						Web)
						- Process Report: (must fol-
						low the Project Guidance on
						the Engineering Project
						Web)
						- In addition, students could
						include prototypes, mock-
						ups, models, products,
						drawings, and
					61/68	Films/pictures on DVD

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						etc.
						The Project and the Process
						report plus optional proto-
						types, mock-ups, models,
						products, drawings, and
						Films/pictures on DVD etc.
						must be handed in on time.
						Allowed tools:
						Personal notes
						Laptop
						Re-examination
						Re-examination: Any re-
						exam will take place in the
						same way as the ordinary
						exam.
						If the student receive a
						grade below 2 then the stu-
						dent can improve on the
						project one time and deliv-
						ery in the approved project
						for a new exam before or in
						in the beginning of the next
						semester. If the student re-
						ceives a grade below 2 on
						an improved project or if the
						student delivers in the pro-
						ject after the improvement
						period have exceeded then
						the student must have a
						new assignment.
						If the student choice not to
						deliver in the project or par-
						ticipate in the ordinary exam
						then the student must have
					62/68	
					02/00	a new assignment for the

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
						project.
						Engineering timeframe:
						Students who failed a se-
						mester project in January or
						June must attend an infor-
						mation meeting on the last
						Friday in June.
						At this meeting, the students
						will get information on spe-
						cific deadlines as well as the
						process of re-exam.
						They will form new groups,
						if possible in relation to the
						number of failed students at
						the individual semesters.
						Based on the feedback, the
						students have received after
						the ordinary exam, they
						must prepare a new project,
						or the failed project must be
						improved.
						Deadline for hand in of the
						project is mid-August (exact
						date will be informed at the
						meeting). There will be no
						guidance in the period up to
						hand in.
						Oral assessment of the pro-
						ject takes place in Septem-
						ber.
OPN1	Open Material Technology	5	The student is expected to	The student is expected to	The students are expected	
	Subject		reach a stage where he/she	apply the following relevant	to have gained enough	Requirements for attending
			can acquire deep	tools, scientific descriptions	knowledge on their own to	examination
			knowledge and analyze dif-	and methods to analyze the	be able to look into a new	None
			ferent material aspects on a	chosen material into depth:	material area and to come	

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
Code	Title	ECTS-point	Knowledge new material area on rele- vant issues within the indus- try.	Skills - Material and chemistry structure - Material constraints - Environmental considera- tion - TBL perspectives - Legislation issues - Material substitution tools - Processing issues - Business perspective	with relevant recommenda- tions on the given subject at a qualified level in relation to - Material usage and rele- vant scarce resources - Material substitution - TBL perspectives - Environmental considera- tion - Relevant legislation issues	Examination <u>Type of examination:</u> To pass the course, stu- dents must hand in a mini project of 15-20 pages ex- cluding appendix (following the normal guidelines for projects) The report will be given a mark directly without oral presentation. In order to
					- Relevant processing is- sues - Business perspectives	pass the course the report must be assessed at least with the mark of 2. Examination accounts for 100% of final grade Internal censor <u>Allowed tools:</u> Course literature according to the course description Personal notes Laptop
						Calculator <u>Re-examination</u> Same as the ordinary exam- ination on a new project subject.
OSS1	Open Sustainability subject	5	The students are expected to reach a stage where he/she can acquire and show deep knowledge on material substitution with re- spect to sustainability issues related to relevant UN world Goals for sustainable devel- opment. The analysis must take both material aspects	The student is expected to apply the following relevant tools, scientific descriptions and methods to analyze the impact of material substitu- tion in deep: - Material selection frame- work	The student is expected to have gained enough knowledge on their own to be able to look in material sub-stitution on a high level and give a clear recommen- dation to the case company in relation to the broader TBL perspective.	Requirements for attending examination Project handed in before deadline <u>Type of examination:</u> To pass the course, students must make a mini project

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
			and process aspects into	- Process selection frame-		15-20 pages excluding ap-
			considerations.	work		pendix (following the normal
				o Use process mapping for		guidelines for projects) and
				illustrating the different pro-		a self-explanatory poster
				cesses.		presentation.
				- LCA considerations		The report will be given a
				o Functional basis for mak-		mark directly without oral
				ing an LCA comparison		presentation. The report
				o Use of data from CES		must receive the mark of 2
				Edupack or HIGGS data-		or above.
				base		7-point scale
				- TBL perspectives		Internal censor
				- Relate to relevant UN		
				world Goals for sustainable		Allowed tools:
				development.		Course litterature according
						to the course description
						Personal notes
						Laptop
						Re-examination
						Same as the ordinary exam-
						ination in a new project case
FMT1 (DM17)	Fluid Mechnics and heat	5	Students who pass this	The student should develop	- Assessing and considering	
	transfer (Class DM17)		module should have	competences within:	materials properties and ap-	Requirements for attending
			knowledge about:		plications	examination
				 Use of the field of study in 	- Researching and analyz-	None
			 Basic fluid mechanics and 	combination with other sub-	ing materials characteristics	
			heat transfer	jects learned on their educa-	- Being familiar with stand-	Type of examination:
			Heat transfer expressed by	tion	ard test methods for as-	Individual oral examination
			thermal networks	Communication of the top-	sessing the properties of ad-	based upon a subject found
			Common pipe system	ics and the methods to per-	vanced textile materials	by draw.No preparation
			components such as	sons without any prior	- Selecting and substantiat-	Internal censor
			pumps, heat exchangers	knowledge of the field	ing the choice of specific so-	
			and valves	 Interpretation of the calcu- 	lutions/materials for the de-	Allowed tools:
				lated results and presenta-	velopment of a high perfor-	Personal notes
				tion of the main conclusions	mance textile materials	
					- Taking part in corporation	Re-examination
					with relevant suppliers and 65/68	

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
Code	Title	ECTS-point	Knowledge	Skills	Competences customers for the purpose of selecting the most suita- ble materials and/ or devel- oping mew materials for ad- vanced applications Furthermore the students should be capable of seek- ing, validating and imple- menting additional knowledge within the sub- ject on their own hand within the following areas. - Elastomeric fibers - Fibers with Chemical, Heat or Fire Resistance - Other Special-Use Fibers - High performance textiles for protective clothing - High performance textiles for heat and fire protection	Examination Same as original examina- tion on new assignment
					- Functional Finishes for	
AU	AU Course - Global Mana- gement	5			Protection	
OMQ1	Operation Mangement and Quality	5	The students are expected to reach a stage where he/she can acquire and show deep knowledge when faced with challenges' in re- lation to improving the oper- ation and quality processes. The student will acquire knowledge in applying suita-	Upon completing the course, the student is ex- pected to acquire broad skills to: • Manufacturing philoso- phies and operational strat- egies • How to describe and apply	The student is expected to have gain competence within the field of improving operations management and the related quality sys- tems so that he/she have the basic tools for address- ing these issues in the fu- ture situations.	Requirements for attending examination Project handed in before deadline <u>Type of examination:</u> To pass the course, students must make a mini project
			ble analytical methods/tools to achieve the necessary knowledge and thereby make deliberate decisions.	value stream mapping to analyze business perfor- mance • How to establish and use Key Performance Indicators	66/68	10-12 pages excluding ap- pendix (following the normal guidelines for projects) The report will be given a mark directly without oral

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
				 Sales and Operations Planning, (S&OP) and the Master Production Schedule Material Requirement Planning Process designs and lay- out types Work (time and methods) studies Forecasting methods Planning and control activi- ties including capacity man- agement Inventory management Lean values, principles, methods and tools Quality philosophies and Quality assurance tools ISO 9000, ISO 14001 and CE directives 		presentation. The report must receive the mark of 2 or above. 7-point scale Internal censor <u>Allowed tools:</u> Course litterature according to the course description Personal notes Laptop <u>Re-examination</u> Same as the ordinary exam- ination in a new project case
FMT1	Fluid Mechnics and heat transfer	5	Students who pass this module should have knowledge about: • Basic fluid mechanics and heat transfer • Heat transfer expressed by thermal networks • Common pipe system components such as pumps, heat exchangers and valves	The student should develop competences within: • Use of the field of study in combination with other sub- jects learned on their educa- tion • Communication of the top- ics and the methods to per- sons without any prior knowledge of the field • Interpretation of the calcu- lated results and presenta- tion of the main conclusions	 Assessing and considering materials properties and applications Researching and analyzing materials characteristics Being familiar with standard test methods for assessing the properties of advanced textile materials Selecting and substantiating the choice of specific solutions/materials for the development of a high performance textile materials Taking part in corporation with relevant suppliers and customers for the purpose 	Requirements for attending examination None Type of examination: Individual oral examination based upon a subject found by draw.No preparation Internal censor Allowed tools: Personal notes Re-examination Same as original examina- tion on new assignment

Code	Title	ECTS-point	Knowledge	Skills	Competences	Examination
					of selecting the most suita-	
					ble materials and/ or devel-	
					oping mew materials for ad	-
					vanced applications	
					Furthermore the students	
					should be capable of seek-	
					ing, validating and imple-	
					menting additional	
					knowledge within the sub-	
					ject on their own hand with	in
					the following areas.	
					- Elastomeric fibers	
					- Fibers with Chemical, Hea	at
					or Fire Resistance	
					- Other Special-Use Fibers	
					- High performance textiles	
					for protective clothing	
					- High performance textiles	
					for heat and fire protection	
					- Functional Finishes for	
					Protection	