SEMESTER SYLLABUS

SEMESTER 2

Semester theme: Building up to 2½ Storeys

Bachelor’s Degree Programme in Architectural Technology and Construction Management

VIA University College

Revised February 2019
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THE SEMESTER</td>
<td>4</td>
</tr>
<tr>
<td>1.1</td>
<td>Admission requirements</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Study activity</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Quality assurance</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Local student council</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Project work</td>
<td>7</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Subject-focused teaching</td>
<td>7</td>
</tr>
<tr>
<td>1.4.1.1</td>
<td>Building Design (BDS)</td>
<td>7</td>
</tr>
<tr>
<td>1.4.1.2</td>
<td>Structural Design (STD)</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1.3</td>
<td>Building Services (BSE)</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1.4</td>
<td>Building Planning and Management (BPM)</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1.5</td>
<td>Communication (COM)</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>Electives</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>Examinations and evaluations</td>
<td>9</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Assessment of the compulsory programme component</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>THE TEACHING</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Indicative timetable</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Reading list and knowledge base</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Additional subject-specific sources</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Annex</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview of learning objectives supported by subject teaching</td>
<td>12</td>
</tr>
<tr>
<td>3.2</td>
<td>Additional subject-specific sources</td>
<td>14</td>
</tr>
</tbody>
</table>
SEMESTER SYLLABUS

Welcome to Semester 2

We hope you have made a good start on your programme of study and that you have become well acquainted with your fellow students - and yourself - when it comes to learning style and collaboration, among other things.

We also hope that you have gained a better understanding of what the programme is all about, and where your strengths and weaknesses lie in relation to it.

Semester 2 continues in the learning environment we call 'Learning to Learn'. From Semester 3, you will move on to the 'Professionalization' learning environment, where the standard gets higher and greater independence is expected of you. That makes it important, in the current semester, for you to get into sensible study and work habits that suit your learning style.

The semester consists of the national subject component entitled ‘Building up to 2½ Storeys’. All teaching during the semester is directed towards the work you and your group will do on a building project of that type.

In Semester 2, you will be working, partly independently and partly in groups, on a continuing project a little more complicated than the one you worked on in Semester 1. Moreover, there will be greater demands on your knowledge, skills and competencies. To conclude this semester, you will be assessed individually in an examination with an external examiner.

The national subject component of the semester carries 30 ECTS credits and includes the following subject areas: Organization and Business Understanding (5 credits), Communication and Collaboration (5 credits), Production (10 credits) and Project Design (10 credits).

It is important for you to begin to consider, in the light of this semester and the final assessment, how you want to shape the remainder of your programme of study.

The first big choice to be made is whether you wish to leave after Semester 4 with an Academy Profession Degree in Construction Technology, or complete the Professional Bachelor’s Degree Programme, graduating in Architectural Technology and Construction Management after Semester 7.

Consider the sort of work you want to do, your financial position and your study situation. If you have doubts about your study skills or your choice of programme pathway, we encourage you to have a chat with one of the programme’s student advisors, or perhaps with one of your teachers.

Recommended reading
As guidance to you and others on the different semesters of the programme, a syllabus like this one has been prepared for each semester.

Figure 1: Document hierarchy
Each semester syllabus consists of two main sections:

1. **The Semester**, which is introduced with a description of the overall structure of the semester, followed by a brief description of the prerequisites we need you to have in place in order to start the semester. The content of the semester is then described in more detail: the *interdisciplinary semester project*, including subjects and other study components, and the *local subject components: the local programme component and the elective programme component*.

2. **The Teaching**: the semester team’s description of the semester’s particular case study and teaching plan, and a reading list. The activities and the case study of the semester are organized by the individual semester team so as to give you the best possible support in achieving the semester’s learning objectives.

1 THE SEMESTER

In this semester, you will mainly be working on one continuing project within the overall theme of the semester, which is building in up to 2½ storeys. As shown in Figure 2, each subject will be directed towards the project.

Theoretical presentations by the teaching staff are often mostly concentrated at the beginning of the course; later on, the teachers will mainly assist with guidance/consultancy relating to the project. It is through the process of working towards the solution of problems that you, the student, will develop your competency as an architectural technologist.

![Interdisciplinary project work](Figure2: Interdisciplinary project work)

<table>
<thead>
<tr>
<th>Class teaching/lectures:</th>
<th>Project work on the theme of the semester</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance/consultancy:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: prepared at VIA Built Environment
1.1 Admission requirements

In order to enrol on Semester 2, you must have passed the Induction Test or otherwise gained approved credit.

1.2 Study activity

The teaching and working formats used in this semester are shown in the Study Activity Model for the semester.

The Study Activity Model indicates that we expect you, the student, to spend approximately 825 hours studying in each semester, and also that there are a variety of teaching and working formats, indicating that not all learning is initiated by the teaching staff and/or has a teacher present. This means that you, the student, also bear considerable responsibility for your own learning. Thus, the Study Activity Model also shows what we expect of you as a student and what you can expect of us as regards your attainment of the learning objectives.

Figure 3: The semester’s Study Activity Model

Source: prepared at VIA Built Environment

The Portfolio and study techniques are important tools on the programme, and you should use them to reflect on your own learning.

1.3 Quality assurance

You and your fellow students play a vital role in the quality assurance and quality development of the programme. It is important for management and teaching staff to receive your feedback so that, together, we can both ensure that you and your fellow students obtain a high level of educational benefit, and create the conditions for a satisfactory teaching and learning environment.

The table below shows how you as students will be involved in the evaluation of teaching activities during Semester 2, who will be the main users of your feedback, and when the evaluation will be carried out.
Table 1: Student involvement in teaching evaluation during the programme

<table>
<thead>
<tr>
<th>Element</th>
<th>Method</th>
<th>Main users</th>
<th>When held</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectation adjustment at the start of a new course of instruction at the institution</td>
<td>Dialogue, based on the semester syllabus, at the introductory session of the semester</td>
<td>Teachers and students</td>
<td>At the start of each semester</td>
</tr>
<tr>
<td>Halfway evaluation of course of instruction at the institution</td>
<td>Method chosen by teaching team</td>
<td>Teaching team</td>
<td>Approx. halfway through semester, as shown in indicative timetable</td>
</tr>
<tr>
<td>Final evaluation of course of instruction at the institution</td>
<td>Online questionnaire</td>
<td>Programme management and teaching team</td>
<td>Each semester to undergo final evaluation once in every three times it is taught. If due to be held, will be shown in indicative timetable.</td>
</tr>
<tr>
<td>Ongoing dialogue</td>
<td>Dialogue between teachers, students and programme managers, e.g. day-to-day or via the local campus/programme student council</td>
<td>Teachers and students</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Final evaluation of placement in Denmark and abroad</td>
<td>Online questionnaire aimed at all placement venues</td>
<td>Programme management, International Office and placement coordinators</td>
<td>Placement venue final evaluation to be carried out after each placement period</td>
</tr>
<tr>
<td>Quality assurance, including final evaluation of study visit abroad</td>
<td>Online questionnaire etc.</td>
<td>Programme management and International Office</td>
<td>At the end of each study visit abroad</td>
</tr>
<tr>
<td>Student satisfaction survey</td>
<td>Online questionnaire</td>
<td>Programme management and VIA senior management</td>
<td>Every 2 years. If due to be held, will be shown in indicative timetable.</td>
</tr>
</tbody>
</table>

Source: prepared at VIA Built Environment

You can see results, KPIs and action plans for yourself at Studienet (Aarhus), Studienet (Horsens) or Studienet (Holstebro)

Here, you will also find further information on the work VIA University College does around quality. The results of current evaluations are presented at the semester introductory session. Your class representatives also play a vital role in communicating what is discussed at campus/programme student council meetings.

1.3.1 Local student council

At VIA, there is one combined Student Council per campus with class representatives from all study programmes, but the individual programmes also have local student councils.

The VIA Built Environment management teams at Horsens, Aarhus and Holstebro continually involve the local student council in discussions about the quality assurance and quality development of the programme, including:
- employer involvement,
- graduate involvement,
- final evaluation of teaching,
- final evaluation of placements in Denmark and abroad,
- final evaluation of study visits abroad,
- student satisfaction survey,
- dropout analysis.

1.4 Project work

Project work consists partly of assignments to be tackled individually and partly of assignments to be tackled in groups of 2-4 students.

The reason for working in groups is partly that this is a very widely used working style in the building sector, and partly that there is learning value in problem-focused collaboration on a specific project with other students who have different experience and skills.

Although students work in groups, it is nevertheless important that you as a student can independently acquire and apply the knowledge you gain from the different subjects.

1.4.1 Subject-focused teaching

Single-subject teaching covers rules, theories, methods and techniques within each specific subject area. When the individual subjects are taught will be set out in detail in the team's teaching plans, which will be made available on It's Learning.

Table 2 shows the areas each subject is divided into. The subject areas are described separately in the subsections to follow.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Subject areas</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Design (BDS)</td>
<td>Architecture and Building Design (BDS/ABD)</td>
<td>33%</td>
</tr>
<tr>
<td></td>
<td>Building Construction (BDS/BCN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials Science (BDS/MAT)</td>
<td></td>
</tr>
<tr>
<td>Structural Design (STD)</td>
<td>Structural Design (STD)</td>
<td>14%</td>
</tr>
<tr>
<td>Building Services (BSE)</td>
<td>Building Services (BSE)</td>
<td>14%</td>
</tr>
<tr>
<td>Building Planning and Management (BPM)</td>
<td>Building Planning and Management (BPM)</td>
<td>21%</td>
</tr>
<tr>
<td>Communication (COM)</td>
<td>Communication (COM)</td>
<td>6%</td>
</tr>
<tr>
<td>ICT</td>
<td></td>
<td>12%</td>
</tr>
</tbody>
</table>

Source: prepared at VIA Built Environment

1.4.1.1 Building Design (BDS)

The subject presentations under BDS will support attainment of the learning objectives for the semester, alone and together with content under other subject groups. Teaching will be based on the following content:

Building Design, Architecture and Building Design (BDS/ABD)
- Architecture and Building Design in relation to building in up to 2½ storeys
- layout, analysis and visualization tools
- Sustainable architecture
Building Design, Building Construction (BDS/BCN)
- project design techniques, analysis and problem solving
- energy-efficient, sustainable and environmentally friendly building structures and assembly details
- use of analogue and digital tools for drawing and communicating building work

Building Design, Materials Science (BDS/MAT):
- information searching, analysis and documentation in the subject area in relation to the semester theme
- justification and documentation of material choices
- developing the content journal
- developing the material description linked to BIM
- manufacturer and construction site visits

1.4.1.2 Structural Design (STD)
The subject presentations under STD will support the attainment of the learning objectives for the semester, alone and together with content under other subject groups. Teaching will be based on the following content:
- shear force curves
- design assumptions, structural design choices and dimensioning
- loads and safety in accordance with Eurocode 0 and 1 - DS-EN 1990 and 1991
- static documentation in accordance with the Building Code (and guidance in SBI 223 – A1 and parts of A2)
- load transfer to foundations
- load-bearing and reinforcing system
- reinforcements and anchors
- force-transmitting assemblies

1.4.1.3 Building Services (BSE)
The subject presentations under BSE will support attainment of the learning objectives for the semester, alone and together with content under other subject groups. Teaching will be based on the following content:
- preparation of plan drawings for interior installations and for drainage water, rainwater and wastewater
- preparation of drainage, sewerage and rainwater plans for the authorities
- alternative energy and heating
- introduction of supply pipelines to the house
- analyses of water and heating plans for all storeys
- national and mechanical ventilation in accordance with the Building Code
- transmission areas and lengths of thermal bridges in accordance with DS 418
- calculation of U-values, manually and/or using software

1.4.1.4 Building Planning and Management (BPM)
The subject presentations under BPM will support attainment of the learning objectives for the semester, alone and together with content under other subject groups. Teaching will be based on the following content:
- interdisciplinary project planning and management (group and personal planning)
- business: technology and finance
- types of contract, contract agreement and procurement procedure
- content journal
- calculation and quantity takeoff (successive calculation)
- quality assurance
- network planning and execution schedule on the interdisciplinary project
- life cycle costing and life-cycle considerations
- Health and Safety Plan (checklist and building site considerations)
- tools (Project, Spreadsheets)

1.4.1.5 Communication (COM)
The subject presentations under COM will support attainment of the learning objectives for the semester, alone and together with content under other subject groups. Teaching will be based on the following content:

Learning/study techniques and collaboration:
- PBL: Problem-Oriented/Problem-Based Learning
- portfolio, extended
- identification of personal skills at a general level
- group contract, extended
- project meetings
- supervision sessions

Dissemination:
- report writing with particular reference to empirical data and use of sources
- meeting invitation, agenda and minute writing with particular reference to building industry meetings

LNG (English):
- (building-related) English, e.g. for giving an oral presentation in English or preparing part of a project
- groupwork with Architectural Technology students of diverse cultural and linguistic backgrounds (if possible)

1.5 Electives
The electives on the Architectural Technology and Construction Management programme start from Semester 3 and are described there.

1.6 Examinations and evaluations
Examination 1 (the Year 1 test) takes place after Semester 2; see the Curriculum.

You and your group must give a digital/oral presentation of significant parts of your work on the semester project. You will then be awarded an individual mark.

Please see the current guidance on the use of digital presentation in the examination.

Table 3 is an overview of the various study components and how they are assessed.

<table>
<thead>
<tr>
<th>Examination</th>
<th>Material examined</th>
<th>Assessed at end of component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination 1</td>
<td>Project work on Building in up to 2½ Storeys, and Portfolio.</td>
<td>X</td>
</tr>
</tbody>
</table>

Source: prepared at VIA Built Environment
General examination information may be found on Studienet (Aarhus), Studienet (Horsens) or Studienet (Holstebro).

1.6.1 Assessment of the compulsory programme component

Assessment is based on the following criteria:
- method and work process (knowledge, skills, competency);
- technical solutions and documentation (knowledge, skills, competency);
- oral presentation and defence (knowledge, skills, competency).
2 THE TEACHING

Please see the class area on It’s Learning, where the semester case study, the timetable, information on the semester project and the teaching matrix/timetable will be uploaded.

2.1 Indicative timetable

The semester timetable will be reviewed at the beginning of the semester. The indicative timetable will then be available in the class folder on IT’s Learning.

2.2 Reading list and knowledge base

2.2.1 Additional subject-specific sources

Additions to the reading list and knowledge base are listed in Annex 3.2.
3 Annex

The annex represents a subject-specific interpretation of the Semester 2 learning objectives. The main aim of the semester is that you, the student, should adopt an appropriate way of working and collaborating and learn to work analytically and reflectively, so that you are at all times able to document the reasoned choices made in the course of the group’s work. The semester’s teaching is organized so as to support this aim to the best possible extent and in accordance with the learning objectives.

To help you find your way around this new subject area, below is an example from the teachers of a subject-based interpretation of the learning objectives based on the end goals of the semester. This interpretation should give you an understanding of what is expected and how the subject teaching relates to the national subject components of the curriculum (Business, Communication and Collaboration, Production and Project Design).

3.1 Overview of learning objectives supported by subject teaching

Examples of learning objectives supported by BDS content:

Building Design ABD:
Knowledge of:
- the concepts, methods and practice of the subject area, with particular emphasis on function and sustainability;
- modern architectural history in a broader context, including styles, building techniques and cultural heritage;
- basic architectural guidelines for the practical and aesthetic layout of the house;
- the relationship between prerequisites and building design;
- sustainable architecture at a holistic level.

Skills:
- lay out a building of up to 2½ storeys using information search and analysis;
- have an initial professional-level command of draughtsmanship;
- reflect on the relationship between the building brief and the building design, and use this reflection to support design decisions.

Building Design BCN
Knowledge of:
- the knowledge base, methods and practice of the subject area in connection with building up to 2½ storeys, with particular emphasis on building analysis at an initial professional level, including knowledge of:
- functional and outcome requirements for building structures;
- analogue and digital tools used in construction project design and communication;
- energy-efficient, sustainable and environmentally friendly structures.

Skills:
- extension of Semester 1’s skills to the analysis and selection of building structures, including sustainable and environmentally friendly structures;
- extension of Semester 1’s drawing and structural design understanding through techniques such as 2D and 3D modelling;
- carry out analyses, problem solving and documentation in the outline proposal, project proposal and planning application phases and in parts of the tender design phase (information level 5)

Building Design MAT:
Knowledge of:
- the knowledge base, methods and practice of the subject area, with particular emphasis on function, energy and sustainability;
- the use of materials in relation to the theme of the semester, including common and new materials;
- production, processing and trading of materials;
- the integration of materials into structures; their function and performance in relation to application: relevant properties (e.g. effect of moisture/weather resistance, density, insulation capacity, acoustics, load-bearing capacity), standards requirements, chemistry, environmental impact, certification schemes, life expectancy and reuse;
- sustainability in relation to economic, social and environmental considerations including certification schemes.

Skills:
- analyse, select and integrate building materials;
- justify and document your choice materials.

Structural Design (STD)
Knowledge of:
- different types of load-bearing structure and material, and their functions in buildings of up to 2½ storeys;
- the static system, and the ability to identify it in the semester project;
- force-transmitting assemblies, and the ability to identify them in the semester project;
- BIM modelling in relation to primary static building components.

Skills:
- account for the static system in a building of up to 2½ storeys
- explain the static load paths through the building, communicating orally and through draughtsmanship
- perform extracts from drawing plans to illustrate the static system;
- determine loads in accordance with current Eurocode 0 and 1 for the semester project;
- prepare static documentation in A1 and be familiar with parts of A2 according to the current Building Code, for the semester project;
- estimate dimensioning of columns, and calculate simple supported timber and steel beams;
- estimate dimensioning of slab structures using table look-up.

Building Services (BSE)
Knowledge of:
- basic details regarding supply and discharge pipelines;
- different types of service installation, conduit and shaft;
- alternative forms of energy and heating;
- mechanical ventilation;
- energy calculation using the current ‘Be’ software.

Skills:
- give an account of all typical service installations and conduits in a building of up to 2½ storeys;
- give an account of alternative forms of power and domestic hot water generation;
- give an account of natural and mechanical ventilation;
- calculate U-values in accordance with DS 418;
- give an account of linear and point losses;
- calculate ventilation losses;
- give an account of different energy classes according to the Building Code, and at a minimum be able to input building envelope data, including linear, point and ventilation losses, into the energy calculation software.

Building Planning and Management (BPM)
Knowledge of:
- price and time management in all project phases;
- organization in relation to the various forms of contract and tender;
- successive calculation;
- classic and modern models of organization theory
- calculation of construction costs, taking account of life-cycle cost considerations, including operation and maintenance;
- fundamentals of business operations;
- use of industry standard documents;
- the execution of construction;
- basic principles of the Health and Safety Plan;
- basic quality assurance (quality understanding).

Skills:
- apply common project planning and project management methods to the theme of the semester;
- analyse and evaluate the execution of construction activities, including contractors' safety and the effect of weather conditions;
- act internally in student's own organization in relation to a given form of contract and tender;
- apply public procurement law;
- systematically embed decisions in project documentation so as to enable knowledge sharing;
- apply simple life-cycle cost considerations when selecting materials;
- systematically budget in all phases on the basis of choices made, and be able to communicate them to the client in a proper manner;
- prepare a construction site plan with documented choices.

Communication (COM)

Knowledge of:
- PBL: Problem-Oriented/Project-Based Learning at a basic theoretical level;
- collaboration and learning methods;
- meeting organization and the importance of having an agenda;
- the structure of meeting minutes and their significance for decisions in the construction industry, with particular reference to legal significance;
- journal keeping as communication among project participants regarding decisions adopted;
- basic construction-related words and expressions in English.

Skills:
- communicate professional topics orally and in writing;
- give an oral presentation in English;
- collect, analyse and draw conclusions from data when writing a report;
- write a group report in order to enter into professional collaboration with other students;
- document decisions by minuting internal meetings;
- reflect on own learning, including collaboration with others;
- convene, hold and conduct a meeting;
- apply relevant study techniques at an initial professional level, including making the case for professional choices;
- collaborate in English with ATCM students of non-Danish linguistic and cultural background.

3.2 Additional subject-specific sources

Interdisciplinary sources
- The Building Code 2018 (BR18)
- SBI Recommendation 258–Recommendation on Building Code BR15 (note that this is a recommendation on the previous Building Code)
- Description of Services for Building and Landscape (YB12)
- Molio's 'BIPS Tools'
- Molio's BIM Object Guide
- Autodesk website with free software for educational use
- DiKon specifications for models and building components
- Revit 2018 – BIM and Concept Design, Niels Ole Christiansen and Ask Raun
Building Design (HUS/ABD/BCN)
- SBI Recommendation 214 – Airtightness of the Building Envelope
- SBI Recommendation 224 – Moisture in Buildings
- SBI Recommendation 233 – Radon-Proofing of New Buildings
- SBI Recommendation 252 – Wetrooms
- SBI Recommendation 253 – Small Houses: Design and Function
- SBI Recommendation 254 – Small Houses: Strength and Stability
- SBI Recommendation 255 – Small Houses: Wetrooms, Water and Wastewater installations
- SBI Recommendation 256 – Small Houses: The Building Envelope
- Collection of Examples on Fireproofing of Buildings 2012
- DBI Recommendation 30: Fire Safety Examples (DBI – Fireproofing of Small Houses)
- Molio/BIPS drawing standards:
 - C213, Drawing Standards, Part 1, General, 2012
 - C213, Drawing Standards, Part 2, Architect, 2018
- (TRÆ 30 (TIMBER 30) – Laminated Timber)
- TRÆ 55 (TIMBER 55) – Facades
- TRÆ 56 (TIMBER 56) – Timber-Framed Houses
- TRÆ 57 (TIMBER 57) – Wood Treatment
- TRÆ 58 (TIMBER 58) – Timber Trusses 2
- TRÆ 59 (TIMBER 59) – Timber Trusses 1
- TRÆ 60 (TIMBER 60) – Timber Boards
- TRÆ 63 (TIMBER 63) – Wood Floors, Selection and Maintenance
- TRÆ 64 (TIMBER 64) – Wood Floors, Laying
- TRÆ 65 (TIMBER 65) – Roof Battens
- TRÆ 66 (TIMBER 66) – Fire Requirements
- TRÆ 67 (TIMBER 67) – Subroofs
- TRÆ 71 (TIMBER 71) – Fireproof Building Components
- Grundlæggende byggeviden (Fundamental Building Knowledge) – 4th edition, Claus Bjerre & Jørgen Larsen
- Byggeriets materialer (Building Materials), Lasse Bengtson & Preben Selck
- Erfaringer med bygningsklasse 2020 (Experiences with Building Class 2020), SBI 2016
- LCA Profiles for Building Components, plus LCAP tool, SBI 2014
- TEGL 37 (BRICK 37) – Execution of Exposed Brickwork
- byg-erfa.dk
- traeinfo.dk
- duko.dk
- mur-tag.dk
- traecad.dk
- http://www.ens.dk (Danish Energy Agency website)

Static Design and Understanding (STD)
- Teknisk Ståbi (Technical Vade Mecum), 24th edition
- BR18 (Building Code), Chapter 28, Documentation of Load-Bearing Structures
- SBI Recommendation 254 – Small Houses: Strength and Stability
- Eurocode 0 Basis of Structural Design (DS/EN 1990), extract
- Eurocode 1 Actions on Structures (DS/EN 1991), extract
- Eurocode 2 Design of Concrete Structures (DS/EN 1992), extract
- Eurocode 3 Design of Steel Structures (DS/EN 1993), extract
- Eurocode 5 Design of Timber Structures (DS/EN 1995), extract
- Eurocode 6 Design of Masonry Structures (DS/EN 1996), extract

Building Services (BSE)
- BR18 (Building Code), Chapters 4, 11, 12, 19, 21, 22: Building Law
- Ventilation and Indoor Climate, VIA 2013-JPP
- Er der plads nok (Is There Enough Room?), Danish Technological Institute, 2009
- SBI Recommendation 265 - Small Houses: Wetrooms, Water and Wastewater installations
- SBI Recommendation 266 - Small Houses: Indoor Climate and Energy
- DS 418, Calculation of Heat Loss from Buildings, 7th edition
- Molio's BIPS Drawing Standards C213, part 5, Plumbing and Ventilation

Building Planning and Management (BPM)
- Projekteringmetodik (Project Design Methodology), Jens Mosegaard & Ove Bjerregaard Broch. 2008
- Projektstyring i praksis (Project Management in Practice), Mikael Eriksson & Joakim Lilliesköld. 2007
- Dokumenthåndtering (Document Management), BIPS A104
- Byggeriets faser og organisering (Construction Phases and Organization), Torben Naldal, 2011
- Økonomisk Planlægning (Financial Planning), Steen Qvist, 2013
- Anlægsteknik 2 – Styring af byggeprocessen (Civil Engineering 2: Building Process Management), 2013
- Byggeprocessen (The Building Process), Niels Fonseca, 7th edition 2015
- www.bar-ba.dk
- Sigma - Molio Price Data
- http://arbejdstilsynet.dk/da

Communication (COM)
- As per Semester 1, and also:
- Problemformulering (Problem Formulation), Lotte Reinecker
- Klart sprog (Clear Use of Language), Peter Stray Jørgensen
- Formalia i opgaver (Formal Requirements in Assignments), Peter Stray Jørgensen
- Gyldendal's Red Dictionaries, Danish/English: follow link on Studienet