SEMESTER SYLLABUS

SEMESTER 3

Semester theme: Industry and Prefabrication

Bachelor's Degree Programme in Architectural Technology and Construction Management

VIA University College

Revised: February 2019
CONTENTS

1 THE SEMESTER 4
 1.1 Admission requirements 4
 1.2 Study activity 4
 1.3 Quality assurance 5
 1.3.1 Local student council 6
 1.4 Project work 6
 1.4.1 Subject-focused teaching 7
 1.4.1.1 Building Design (BDS) 7
 1.4.1.2 Structural Design (STD) 8
 1.4.1.3 Building Services (BSE) 8
 1.4.1.4 Building Planning and Management (BPM) 8
 1.4.1.5 Communication (COM) 8
 1.4.1.6 Law (LAW) 9
 1.4.2 Other study components (local subject components) 9
 1.5 Local subject components 9
 1.5.1 Elective programme component (EPC, 5 ECTS credits) 10
 1.6 Examinations and evaluations 10
 1.6.1 Assessment of the compulsory programme component 10
 1.6.2 Assessment of the elective programme component (EPC) 10

2 THE TEACHING 11
 2.1 Indicative timetable 11
 2.2 Reading list and knowledge base 11
 2.2.1 Additional subject-specific sources 11

3 Annex 12
 3.1 Overview of learning objectives supported by subject teaching 12
 3.2 Additional subject-specific sources 15
Welcome to Semester 3

You have now reached the first semester in the learning environment we call ‘Professionalization’. This means that the demands on you and your fellow students now more closely resemble those that will be made on you in your future professional life. We now expect you to know your own learning style and to have a good understanding of the project-based approach to learning.

The project theme for this semester is ‘Industrialized Building’.

Up to this point, you have done a lot of work on the design of houses. In this semester, you will learn about the connections between project-designing an industrialized building, organizing the production of the building components and, finally, organizing the construction. There will also be a focus on the tasks associated variously with consultants, manufacturers and contractors.

Particular emphasis will be placed on your gaining an understanding of the importance of good, timely communication during the building process.

This semester also includes an elective programme component under the rubric of ‘Innovation and Entrepreneurship’. The aim of the elective is that you should acquire knowledge of creativity, innovation and entrepreneurship, enabling you to take part in innovative processes in interprofessional contexts.

We expect you to use what you have learnt when working on projects from now on.

At the end of this semester, you will have to choose whether you want to leave with an Academy Profession Degree in Construction Technology after Semester 4, or to graduate with a Bachelor's Degree in Architectural Technology and Construction Management after Semester 7.

Consider the sort of work you want to do, your financial position and your study situation. If you have doubts about your study skills or your choice of programme pathway, we encourage you to have a chat with one of the programme’s student advisors, or perhaps with one of your teachers.

Recommended reading
As guidance to you and others on the different semesters of the programme, a syllabus like this one has been prepared for each semester.

Figure 1: Document hierarchy

![Document hierarchy](image)

Source: prepared at VIA Built Environment

Each semester syllabus consists of two main sections:

1. **The Semester**, which is introduced with a description of the overall structure of the semester, followed by a brief description of the prerequisites we need you to have in place in order to start the semester. The content of the semester is then described in more detail: the interdisciplinary semester project, including subjects and other study components, and the local subject component.
2. The Teaching: the semester team’s description of their particular semester case study and teaching plan, and a reading list. They have designed these to enable you to attain the learning objectives set.

1 THE SEMESTER

In this semester, you will mainly be working on one continuing project within the overall theme of the semester. As shown in Figure 2, each subject will be directed towards the project.

Theoretical presentations by the teaching staff are often mostly concentrated at the beginning of the course; later on, the teachers will mainly assist with guidance/consultancy relating to the project. It is through the process of working towards the solution of problems that you, the student, will develop your competency as an architectural technologist.

Figure 2: Interdisciplinary project work

<table>
<thead>
<tr>
<th>Class teaching/lectures:</th>
<th>Project work on the theme of the semester</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance/consultancy:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: prepared at VIA Built Environment

As Semester 3 is the first semester in the ‘Professionalization’ pedagogical learning environment, a so-called elective programme component (equivalent to 3 weeks’ duration) will now be included for the first time. This elective will give you the opportunity to explore your aptitude for collaborating on relevant topics with students from other disciplines – an important piece of knowledge about your skills that should inspire, stimulate and professionalize you in your studies to come. The elective is an independently organized course of study.

1.1 Admission requirements

In order to enrol on Semester 3, you must have been passed the Semester 2 examination or otherwise gained approved credit.

1.2 Study activity

The teaching and working formats used in this semester are shown in the Study Activity Model for the semester.
The Study Activity Model indicates that we expect you, the student, to spend approximately 825 hours studying in each semester, and also that there are a variety of teaching and working formats, indicating that not all learning is initiated by the teaching staff and/or has a teacher present. This means that you, the student, also bear considerable responsibility for your own learning.

Thus, the Study Activity Model also shows what we expect of you as a student and what you can expect of us as regards your attainment of the learning objectives.

Figure 3: The semester's Study Activity Model

```
- Teaching in class / Lectures
  - Exam and evaluations
  - Company / building site visits, conferences and external lectures
  - Quality assurance and development

PARTICIPATION OF: LECTURERS

INITIATED BY: LECTURERS

- Project work
  - E-learning objectives
  - Assignment solving
  - Portfolio

PARTICIPATION OF: STUDENTS

INITIATED BY: STUDENTS

- Own preparation for teaching and exam
  - Elective programme element
  - Seeking information
  - Company / building site visits, conferences and external lectures

- Guidance / Consultancy

20 %

40 %

20 %

20 %

Source: prepared at VIA Built Environment
```

The Portfolio is an important tool on the programme, and you should use it to reflect on your own learning.

1.3 Quality assurance

You and your fellow students play a vital role in the quality assurance and quality development of the programme. It is important for management and teaching staff to receive your feedback so that, together, we can both ensure that you and your fellow students obtain a high level of educational benefit, and create the conditions for a satisfactory teaching and learning environment.

The table below shows how you as students will be involved in the evaluation of teaching activities during Semester 3, who will be the main users of your feedback, and when the evaluation will be carried out.

Table 1: Student involvement in teaching evaluation during the programme

<table>
<thead>
<tr>
<th>Element</th>
<th>Method</th>
<th>Main users</th>
<th>When held</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectation adjustment at the start of a new course</td>
<td>Dialogue, based on the semester syllabus,</td>
<td>Teachers and students</td>
<td>At the start of each semester</td>
</tr>
<tr>
<td>of instruction at the institution</td>
<td>at the introductory session of the semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halfway evaluation of course of instruction at the</td>
<td>Method chosen by teaching team</td>
<td>Teaching team</td>
<td>Approx. halfway through semester, as shown in indicative timetable</td>
</tr>
<tr>
<td>institution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final evaluation of course of instruction at the institution</td>
<td>Online questionnaire</td>
<td>Programme management and teaching team</td>
<td>Each semester to undergo final evaluation once in every three times it is taught. If due to be held, will be shown in indicative timetable.</td>
</tr>
<tr>
<td>Ongoing dialogue</td>
<td>Dialogue between teachers, students and programme managers, e.g. day-to-day or via the local campus/programme student council</td>
<td>Teachers and students</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Final evaluation of placement in Denmark and abroad</td>
<td>Online questionnaire aimed at all placement venues</td>
<td>Programme management, International Office and placement coordinators</td>
<td>Placement venue final evaluation to be carried out after each placement period</td>
</tr>
<tr>
<td>Quality assurance, including final evaluation of study visit abroad</td>
<td>Online questionnaire etc.</td>
<td>Programme management and International Office</td>
<td>At the end of each study visit abroad</td>
</tr>
<tr>
<td>Student satisfaction survey</td>
<td>Online questionnaire</td>
<td>Programme management and VIA senior management</td>
<td>Every 2 years. If due to be held, will be shown in indicative timetable.</td>
</tr>
</tbody>
</table>

Source: prepared at VIA Built Environment

You can see results, KPIs and action plans for yourself at Studienet (Aarhus), Studienet (Horsens) or Studienet (Holstebro).

Here, you will also find further information on the work VIA University College does around quality. The results of current evaluations are presented at the semester introductory session. Your class representatives also play a vital role in communicating what is discussed at campus/programme student council meetings.

1.3.1 Local student council

At VIA, there is one combined Student Council per campus with class representatives from all study programmes, but the individual programmes also have local student councils.

The VIA Built Environment management teams at Horsens, Aarhus and Holstebro continually involve the local student council in discussions about the quality assurance and quality development of the programme, including:
- employer involvement,
- graduate involvement,
- final evaluation of teaching,
- final evaluation of placements in Denmark and abroad,
- final evaluation of study visits abroad,
- student satisfaction survey,
- dropout analysis.

1.4 Project work

Project work consists partly of assignments to be tackled individually and partly of assignments to be tackled in groups of 2-4 students.
The reason for working in groups is partly that this is a very widely used working style in the building sector, and partly that there is learning value in problem-focused collaboration on a specific project with other students who have different experience and skills. Although students work in groups, it is nevertheless important that you as a student can independently acquire and apply the knowledge you gain from the different subjects.

1.4.1 Subject-focused teaching

Single-subject teaching covers rules, theories, methods and techniques within each specific subject area. When the individual topics are taught will be set out in detail in the team’s teaching plans, which will be made available on It’s Learning. Examples of specialist interpretations of the Semester 3 learning objectives for the individual subjects are listed in Annex 2.

Table 2 shows the areas each subject is divided into. The subject areas are described separately in the subsections to follow

<table>
<thead>
<tr>
<th>Subject</th>
<th>Subject areas</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Design (BDS)</td>
<td>Architecture and Building Design (BDS/ABD)</td>
<td>36 %</td>
</tr>
<tr>
<td></td>
<td>Building Construction (BDS/BCN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials Science (BDS/MAT)</td>
<td></td>
</tr>
<tr>
<td>Structural Design (STD)</td>
<td></td>
<td>8 %</td>
</tr>
<tr>
<td>Building Services (BSE)</td>
<td></td>
<td>12 %</td>
</tr>
<tr>
<td>Building Planning and Management (BPM)</td>
<td></td>
<td>29 %</td>
</tr>
<tr>
<td>Communication (COM)</td>
<td></td>
<td>5 %</td>
</tr>
<tr>
<td>Law (LAW)</td>
<td></td>
<td>10 %</td>
</tr>
</tbody>
</table>

Source: prepared at VIA Built Environment

1.4.1.1 Building Design (BDS)

The subject presentations under BDS will support attainment of the learning objectives for the semester, alone and together with content under other subject groups. Teaching will be based on the following content:

Building Design ABD
- Architecture and building design in relation to the theme of the semester
- Sketching and design methodology using analogue and digital tools

Building Design BCN
- Work on a project proposal on the basis of a given preliminary design for a large-span building
- Work on tender documentation, functional tender on a project proposal (consultant)
- Work on design of building components in a manufacturing and installation company

Building Design MAT:
- timber in relation to component production
- concrete in relation to component production
- joints (grouting materials), panel materials, heat insulation materials

7/16
work on material analysis and material description in content journal/building component analysis on drawings and in tender specification
- analogue and digital tools for sketching and communicating building projects
- relevant company visits

1.4.1.2 Structural Design (STD)
The subject presentations under STD will support the attainment of the learning objectives for the semester, alone and together with content under other subject groups. Teaching will be based on the following content:
- static analysis
- force-transmitting assemblies and load transfer
- estimated dimensioning of prefabricated components, and communication thereof
- estimated dimensioning of lifting points and methods
- bracing and anchoring

1.4.1.3 Building Services (BSE)
The subject presentations under BSE will support attainment of the learning objectives for the semester, alone and together with content under other subject groups. Teaching will be based on the following content:
- principles of heating in larger buildings
- principles of mechanically balanced ventilation
- plans and principles for ventilation, sewerage, water and heating conduits
- ventilation plan in a concrete or timber component building
- introduction to the Revit MEP (Mechanical – Electrical – Plumbing) program
- moisture in structures

1.4.1.4 Building Planning and Management (BPM)
The subject presentations under BPM will support attainment of the learning objectives for the semester, alone and together with content under other subject groups. Teaching will be based on the following content:
- transport logistics
- study planning, group collaboration and resource management
- business and technology
- types of contract and procurement
- construction scheduling
- calculation, quantity takeoff and tender documents
- life cycle cost
- content journal
- quality assurance
- construction site set-up
- Health and Safety Plan (HSP)
- Waste management

1.4.1.5 Communication (COM)
The subject presentations under COM will support attainment of the learning objectives for the semester, alone and together with content under other subject groups. Teaching will be based on the following content:

Learning/study technique and collaboration:
- the effective team: definition, development and challenges
- portfolio writing with focus on professionalism

Dissemination:
- professional communication, including drawings and email

1.4.1.6 Law (LAW)
The subject presentations under LAW will support attainment of the learning objectives for the semester, alone and together with content under other subject groups. Teaching will be based on the following content:

- hierarchy of laws
- legal method
- basic law of contract
- standard contracts in construction (roles and responsibilities)
- basic law of torts
- basic contract law including rules of interpretation
- procurement law with reference to the Semester 3 case study, e.g. time and risk management in the tendering phase
- company law (partnerships vs limited companies)
- debt liability and bankruptcy
- AB18 (General Conditions), particularly the Client-Contractor relationship with reference to the Contractor’s risk management, time management and financial management
- recourse to court, arbitration and Procurement Board practice
- focus on relationship between the parties - Client, Contractor and Supplier

1.4.2 Other study components (local subject components)

During the semester, the semester team may arrange other study components, in consultation with the students if appropriate. This will then appear on the timetable or the schedule planner for the particular class.

1.5 Local subject components

A local subject component is defined as either a local elective programme component (EPC) or a local programme component (LPC).

The local subject component in Semester 3 is an elective (EPC) – the first of six local subject components distributed over Semesters 3, 4, 5 and 7.

The figure below shows the rating of the EPC component alone in relation to the compulsory element, Industry and Prefabrication.

<table>
<thead>
<tr>
<th>Erhverv og præfabrikation, 25 ECTS</th>
<th>Lokalt fælledelement 5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry and Prefabrication, 25 ECTS credits</td>
<td>Local subject component 5 ECTS credits</td>
</tr>
</tbody>
</table>
1.5.1 Elective programme component (EPC, 5 ECTS credits)

The learning objectives and content of this course of study are described in detail in the institutional part of the curriculum, under Section 3.1, Elective Programme Components, EPC (3.1.1. Elective Programme Component, Semester 3).

1.6 Examinations and evaluations

A concluding examination takes place at the end of the semester. You and your group present the ongoing semester project. You will then receive an individual mark, partly for what you have done as a group and partly for your independent part of the project.

Table 3 is an overview showing the various study components and whether they are assessed prior to, or during, the internal examination.

<table>
<thead>
<tr>
<th>Study component</th>
<th>Assessed prior to concluding examination</th>
<th>Assessed during final examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination 2: project work on Industry and Prefabrication</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Portfolio</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Examination 3: Elective programme component (EPC)</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Source: prepared at VIA Built Environment

General examination information is available on Studienet.

1.6.1 Assessment of the compulsory programme component

Assessment is based on the following criteria:
- method and work process (knowledge, skills, competency);
- technical solutions and documentation (knowledge, skills, competency);
- oral presentation and defence (knowledge, skills, competency).

Significant parts of the project must be presented digitally/orally, with an oral evaluation by the teachers to follow.

1.6.2 Assessment of the elective programme component (EPC)

2 THE TEACHING

Please see the class area on It’s Learning, where the semester case study, the timetable, information on the semester project and the teaching matrix/plan will be uploaded.

2.1 Indicative timetable

The semester timetable will be reviewed at the beginning of the semester. The indicative timetable will then be available in the class folder on IT’s Learning.

2.2 Reading list and knowledge base

2.2.1 Additional subject-specific sources

Additions to the reading list and knowledge base are listed in Annex 3.2.
3 Annex

The annex represents a subject-specific interpretation of the Semester 3 learning objectives.

In Semester 3, importance attaches to your ability as a student independently, in a manner befitting a beginning professional, to assume and operate in the different roles associated variously with project design, industrial component production and the organization of the construction of large building projects such as industrial buildings, sports halls etc. Your professional approach will be assessed on your ability to ascertain, execute and communicate the descriptions and drawings necessary and relevant to each of the different phases and roles set for you in this semester’s interdisciplinary project, from consultant, through production management, to project manager during execution. This includes your ability to present and defend them to your fellow students and your teachers.

To help you find your way around this new subject area, below is an example of a subject-based interpretation of the learning objectives based on the end goals of the semester. This interpretation should give you an understanding of what is expected and how the subject teaching relates to the national subject components of the curriculum (Business, Communication and Collaboration, Production and Project Design).

3.1 Overview of learning objectives supported by subject teaching

Building Design (BDS)
Examples of learning objectives supported by BDS content:

Building Design ABD
Knowledge of:
- the concepts, methods and practice of the subject area;
- architectural history and architectural techniques in relation to the theme of the semester;
- the interrelation between functional requirements, material choices, aesthetics and sustainability in industrialized building.

Skills:
- analyse functions, structures and material choices, and be able independently to make well-grounded overall decisions relating to architecture;
- work with sketching as a design and layout tool.

Building Design BCN
Knowledge of:
- the fundamental principles and possible applications of methods and techniques for the planning, design and execution of large-span buildings using industrialized building processes and components;
- the fundamental principles of building component design from the project design phase to the production and execution phase, with particular reference to prefabricated components;
- modern building methods and building structures with particular reference to industrial production and environmental aspects;
- the legal basis for the construction of component buildings in 1 to 2 storeys;
- analogue and digital sketching and design tools.

Skills:
- analyse and select building structures for a large-span industrialized building;
- plan and develop a component building from project proposal and parts of the regulatory approvals to execution;
- produce documentation and communicate practice-oriented professional problems and solutions related to component building in the design and execution phases, using digital systems;

Building Design MAT:

Knowledge of:
- materials, their composition and their use in relation to the theme of the semester, including the composition, properties, processing, standards requirements, environmental impacts, protection, trading, maintenance, structural conditions, life-cycle evaluation, social, cultural and ethical issues and disposal/reuse of materials;
- manufacturing tolerances, installation tolerances and quality control.

Skills:
- analyse and select materials for structures;
- justify and document material choices.

Structural Design (STD)

Examples of learning objectives supported by STD content:

Knowledge of:
- different types of pre-fabricated load-bearing and non-load-bearing structure in relation to the theme of the semester;
- the load-bearing and bracing system in relation to the theme of the semester;
- force-transmitting assemblies;
- dimensioning and structure of pre-fabricated façade components;
- fundamental principles set out in the Digital Construction initiative (Det Digitale Byggeri).

Skills:
- identify and account for static systems;
- select relevant data and explain the static system and static load pathways through structures;
- identify and account for force-transmitting assemblies;
- estimate and produce a working drawing for component production;
- enter relevant property data on static condition requirements into the BIM model;
- carry out collision and consistency control;
- use analysis to obtain an optimum classification of industrially produced components as regards static requirements and loads, also taking account of sustainability aspects of production, transport and installation;
- describe the physical handling of pre-fabricated components and give an account of lifting points on a pre-fabricated component.

Building Services (BSE)

Examples of learning objectives supported by BSE content:

Knowledge of:
- different types of heating in larger buildings and offices;
- different ventilation systems for non-residential buildings;
- energy consumption requirements and calculation of the building's energy framework;
- factors affecting the indoor climate of the current project, and possible indoor climate optimisation solutions.

Skills:
- prepare drawing material for selected building services (e.g. ventilation, sewerage, water and heating) for a planning application;
- calculate the design heat transfer loss through the building envelope;
- calculate an energy framework for the building envelope, including windows and shade;
- evaluate and, in collaboration with ventilation experts, select a suitable ventilation system for the particular project.
Building Planning and Management (BPM)
Examples of learning objectives supported by BPM content:

Knowledge of:
- group collaboration and resource management at a level enabling you to work purposefully in groups on the solution of complex problems;
- organizational structure, the manager’s role in an organization, and different organizational forms;
- organizational, administrative and financial management of construction companies, with particular reference to project design and project management;
- types of procurement procedure and contract; contract demarcation;
- relevant recommendations from the Danish Association of Architectural Firms (DANSKE ARK) and the Danish Association of Consulting Engineers (FRI), including scrutiny tools and service descriptions, such as the BIPS description tool;
- building cost calculation taking account of life-cycle cost, including manufacturing and maintenance;
- the Working Environment Act, safety work in contracting firms and Health and Safety Plans (HSPs);
- Relevant manufacturing technologies and relevant environmental and safety regulations;
- quality assurance procedures and quality control of production and installation, including tolerances in the manufacturing and fitting of building components;
- BIM and digital construction, including the use of the ‘Project Hotel’ platform;
- transport and site logistics in relation to component installation.

Skills:
- collaborate and work independently to plan and execute team planning and follow-up of supervision sessions;
- plan project work appropriately on both a group and an individual basis;
- use a suitable document structure, including numbering of drawings, for the group’s project work;
- use standard methods to plan, direct and project-manage the design work as designer, producer and contractor (execution planning);
- carry out a successive calculation;
- scrutinize an outline proposal and project proposal, and use the results of the scrutiny in subsequent project design (follow-up);
- scrutinize tender documents and draw up control schedules for reception control (components);
- perform extracts from the BIM model for calculations at increasing levels of detail over the phases of the project, including the tender price for the selected contract;
- apply standard methods of drawing up documents, both legal and technical, required for putting the component contract out to tender;
- communicate practice-oriented professional problems at company start-up and during operations, including budgeting, organization, production planning and tendering, and be able to communicate reflections thereon;
- describe the role and duties of the project manager in the organization of a company, e.g. as a communication catalyst;
- plan and organize factory production of components;
- use a relevant platform to exchange project documentation;
- plan component installation, including a workplace assessment of the student’s own work, and carry out an HSP assessment.

Communication (COM)
Examples of learning objectives supported by COM content:

Knowledge of:
- what characterizes the effective team;
- requirements for professional communication, with reference to communication by drawings and by email;
- common English expressions relevant to construction (top-up to Semester 2);

Skills:
- Use portfolio writing, taking account of the new teaching environment – Professionalization;
- Collaborate in the group and plan, conduct and follow up supervision sessions more independently;
- Make more conscious use of the basic principles of PBL in study;
- Call upon own and other group members' personal skills or learning styles in groupwork;
- Describe models and systems that play a part in the work of the group, e.g. motivation, group organization, roles, conflicts;
- Communicate practice-oriented problems and solutions in writing to partners and users;
- Make a short presentation in English on a building technology topic (top-up to Semester 2).

Law (LAW)

Examples of learning objectives supported by LAW content:

Knowledge of:

- The structure of the legal order, and legal method;
- Basic law of contract with reference to the conclusion and interpretation of contracts;
- Standard agreements in the construction industry, with reference to the division of roles and responsibilities in different types of contract in accordance with the General Conditions;
- Basic law of torts, within or without contract;
- Practice within the fields specified;
- The significance of procurement regulations for the semester case study;
- Options and regulations for the establishment of one's own business in the profession;
- Company types and organizational forms in relation to business start-up and operation, including liability and bankruptcy;

Skills:

- Give an account of the selected type of contract and its characteristics as compared with other common types of contract;
- Give an account of the regulatory basis for collection of tenders in relation to the semester case study;
- Scrutinize the legal basis for entering into a contract, and prepare a legal risk assessment in the company;
- Prepare contract agreements and apply the General Conditions for the Provision of Works and Supplies within Building and Engineering, focusing on the Client-Contractor-Supplier relationship for the purpose of the Contractor's risk management, time management and financial management, particularly in the areas of defects, time/delays and payment.

3.2 Additional subject-specific sources

Interdisciplinary sources

- ICT and BIM
- List of textbooks and readers 2018

HUS/ABD

- Dansk – Engelsk Illustreret byggeordbog / Illustrated Building Dictionary by Ulrik A. Hovmand
- Danmarks arkitektur, Arbejdets bygninger (The Architecture of Denmark: Working Buildings), by Jørgen Sestoft

HUS/BCN

- See list of recommended textbooks and readers
- www.betonportal.dk
- www.detdigitalebyggeri.dk
- www.bips.dk
- www.students.autodesk.com
- Det digitale byggeri (Digital Construction)
- BIM Guide
- COBIM
HUS/MAT
- TRÆ Information (Timber Information Council) publications (TRÆ 50/TIMBER 50, Quality and Properties of Timber; TRÆ 55/TIMBER 55, Timber Facades; TRÆ 56/TIMBER 56, Timber-Framed Houses), www.træinfo.dk
- Aalborg Portland (Concrete Floor Structures, Self-Compacting Concrete Floor Structures)
- Concrete Components www.betonportal.dk
- The Concrete Component Association www.bef.dk
- Where is the Limit? www.tolerancer.dk
- Indicative lecture plan for MAT

BSE
- Indoor Climate and Ventilation, Reader
- DS 418, Calculation of Heat Loss from Buildings
- SBI Recommendation 213, Guide to ‘Be’ Calculations
- SBI Recommendation 224, Moisture in Buildings

STD
- Teknisk Ståbi (Technical Vade Mecum)
- Dimensionering med tabeller (Dimensioning with Tables) (Knud Ahler)
- Eurocode 0 (DS/EN 1990) with associated National Annex
- Eurocode 1 (DS/EN 1991) with associated National Annex
- Eurocode 2 (DS/EN 1992) with associated National Annex
- Eurocode 5 (DS/EN 1995) with associated National Annex

BPM
- YBL18 (Description of Services for Building and Landscape, 2018, www.frinet.dk)
- Kvalitetsbekendtgørelsen (the Quality Regulation)
- Tilbudsloven (Tendering Procedures Act)
- Bips A113
- Bips description tool: www.bips.dk
- Virksomhedsdrift (Business Operations), Flemming Ettrup
- http://www.startvaekst.dk/ (‘Start Growth’)
- V&S Price data
- www.detdigitalebyggeri.dk (Digital Construction)
- www.bips.dk
- AB18 (General Conditions for Works and Supplies)
- ABR18 (General Conditions for Consultancy and Assistance)
- www.retsinfo.dk (official law site)
- www.at.dk (Working Environment Authority)

LAW
- AB 92/18 (General Conditions for Works and Supplies)
- ABR 89/18 (General Conditions for Consultancy and Assistance)
- Tilbudsloven (Tendering Procedures Act)
- AB 92/AB18 for Practitioners, Molio
- Byggejura - En indføring i byggeriets retskilder (Building Law: An Introduction to the Sources of Law on Building), Nyt Teknisk Forlag, 2008